Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 264(Pt 2): 130671, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458286

ABSTRACT

In this paper we investigate polyelectrolyte complexes of sodium alginate (Alg) and chitin nanocrystals (ChNC). Formation, stability and transport properties of sunflower oil-in-water emulsions stabilized by ChNC-Alg complex were studied using dynamic light scattering (DLS), laser Doppler electrophoresis, optical microscopy, potentiometric titration, rheology and simulated digestion. It has been established that during emulsions formation, the ChNC-Alg complex is rearranged at the interface and the formation of a two-layer coating of the droplet occurs. Stabilized O/W emulsions are stable during storage, in the pH range 2-9 and centrifugal acceleration up to 2000 RCF. Presence of Ca2+ and Na+ ions in the range up to 150 mM has virtually no effect on the droplet size. Inclusion of 5 wt% Alg in the ChNC-based emulsion stabilizer system leads to a drop in Gibbs adsorption >16 times compared to the ChNC-stabilized emulsion, increase in viscosity and rheopexy index of the systems. We found that chemical properties of colloidal phase surface and rheological properties of emulsions stabilized by ChNC-Alg are mostly dependent on the droplet size, not the type of oil as a result of a comparative study of sunflower oil/liquid paraffin oil. Emulsion drops of an optimized composition are stable in the upper parts of the model gastrointestinal tract system and transport vitamin D3 to the small intestine without significant losses. The bioavailability of vitamin D3 in emulsions stabilized with the ChNC-Alg complex is higher than for emulsions stabilized with ChNC alone.


Subject(s)
Chitin , Nanoparticles , Emulsions/chemistry , Chitin/chemistry , Biological Availability , Cholecalciferol , Sunflower Oil , Rheology , Particle Size , Water/chemistry
2.
Carbohydr Polym ; 319: 121169, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567709

ABSTRACT

SH-containing polymers and nanoparticles are a significant direction in the creation of novel materials. The aim of this work is the synthesis of cellulose nanocrystals (CNC) with a surface modified by tosyl functions (CNC-Ts) and their further modification into SH-containing nanocrystals (CNC-SH). CNC-Ts were synthesized in an aqueous-organic emulsion from never-dried particles, while maintaining the size and supramolecular structure of CNC; the content of Ts-functions is up to 2.5 mmol·g-1. Structure of the derivatives was analyzed by TEM, XRD, CP/MAS 13C NMR and FTIR spectroscopies. Nucleophilic substitution and hydrolysis of the obtained thioisouronium salts leads to the production of CNC-SH. To quantify SH-groups we used elemental analysis, potentiometric titration and Folin-Ciocalteu and Ellman's reagents. It is shown that SH-groups on the surface are partially oxidized and are involved in a dense network of hydrogen bonds. Rheological properties of CNC-SH hydrosols are close to those of CNC, addition of H2O2 at acidic pH leads to an increase in viscosity of the system; H2O2 added at neutral pH causes opposite effect - viscosity decreases. CNC-SH have a high capacity for sorption of Cr(VI) in acidic environments and exhibit photoreductive properties under UV irradiation.

3.
Langmuir ; 39(33): 11769-11781, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37556390

ABSTRACT

In this work, we studied for the first time the formation of olive oil emulsions in water stabilized by plate-like nanocrystals with the supramolecular structure of cellulose II (pCNC). Effects of storage, pCNC concentration, and NaCl on the stability and properties of Pickering emulsions, including the creaming index, droplet size, zeta potential, acid-base surface properties, and rheology, were studied. A significant influence of the shape of nanoparticles (compared to the classical rod-like shape) on the stability parameters and rheological characteristics of emulsions is shown. Plate-like cellulose nanocrystals at a concentration of 16 g/L are able to form delamination-resistant emulsions without added electrolytes. The viscosity of pCNC-stabilized emulsions tends to decrease with increasing electrolyte concentration in the system, which is not characteristic of rod-like CNC-stabilized emulsions. This effect in pCNC-stabilized emulsions assumedly can be associated both with weak mechanical engagement between drops due to the shape of stabilizer particles and with an insignificant participation of background electrolyte cations in the formation of interdroplet interactions. Therefore, the resulting aggregates are unstable and easily destroyed, even under weak mechanical stress. As a consequence, the acid-base properties of the pCNC surface are practically independent of the emulsion preparation method (with or without electrolyte) as well as the concentration of the background electrolyte. The reduced viscosity of pCNC-stabilized emulsions in the presence of an electrolyte, coupled with the absence of acute toxicity, allows us to recommend them as a convenient oral delivery system for fat-soluble, biologically active substances. Our emulsions carrying donepezil (an anti-Alzheimer drug) showed better performance than a solution of donepezil hydrochloride in preventing memory impairment tested on laboratory mice.


Subject(s)
Cellulose , Nanoparticles , Animals , Mice , Emulsions/chemistry , Cellulose/chemistry , Surface Properties , Nanoparticles/chemistry , Water/chemistry
4.
ACS Appl Bio Mater ; 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36018793

ABSTRACT

Vitamin D3 deficiency is a major public health problem worldwide, and standard cholecalciferol formulations provide poor absorbability of the vitamin. Several biphasic formulas have been proposed to overcome the disadvantages in which Pickering emulsions stand out in particular. This paper describes olive oil-in-water Pickering emulsions stabilized by pseudoboehmite (AlOOH), cellulose nanocrystals (CNC), and their heterocoagulates. Colloidal properties were assessed by laser Doppler microelectrophoresis, potentiometric titration, and rheology. It was shown that the heterocoagulation of CNC and AlOOH led to a drastic change in surface properties (ζ-potential, pKa, and number of active centers), which promoted the formation of more stable emulsions with the smallest size of droplets and the highest viscosity among the studied samples. Simulated digestion studies showed the targeted release in the small intestine medium where cholecalciferol should be delivered. High-performance liquid chromatography showed the efficient encapsulation of cholecalciferol in emulsions (86% of initial concentration). Oral administration to laboratory mice of initial nanoparticles and emulsions stabilized by them showed nontoxicity for all of the components, and they were estimated to be class V materials. The proposed emulsions have great potential as targeted delivery systems of lipophilic drugs.

5.
Carbohydr Polym ; 284: 119162, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35287895

ABSTRACT

Pickering emulsions are of interest in medicament transport systems. The properties of emulsions are influenced by the type of oil and the surface structure of nanoparticles-stabilizers. The process of formation of o/w emulsions of olive oil stabilized by chitin nanocrystals was investigated, their stability under the influence of physical factors, rheological characteristics, acute toxicity after oral administration, stability under the conditions of a model of the gastrointestinal tract, and their potential for oral transport of vitamin D3 were analyzed. Physically stable emulsions were obtained at a stabilizer concentration of 3.6 g/l. The addition of electrolyte leads to a substantial reduction in the average size of microdroplets. The resulting emulsions have rheopexy properties and the rheopexy index increases at 37 °C. Emulsions are classified as non-toxic when taken orally, physically stable in the upper digestive system, and capable of efficiently transporting vitamin D3 with a full release in the small intestine.


Subject(s)
Chitin , Nanoparticles , Chitin/chemistry , Cholecalciferol/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Nanoparticles/toxicity , Olive Oil , Particle Size , Water/chemistry
6.
Carbohydr Polym ; 269: 118307, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294324

ABSTRACT

Promotion of promising cellulose nanocrystals (CNC) is largely dependent on the relationship between their morphology, surface chemical composition, and supramolecular structure with toxicity, hemocompatibility, and biodegradability. This paper outlines comparative and integrated analysis of the mentioned biocompatibility aspects of partially acetylated rod-, and disc-lake morphology of CNC with crystalline cellulose allomorphs I and II. These data have also included the study of CNC obtained from the sulfuric acid solutions. The aqueous solution of all types of tested CNC has not been toxic to mice after oral administration. Morphology of internal organs has not changed. However, in case of disc-like particles, the kidney mass coefficient noticeably changed. CNC have neither triggered platelet aggregation nor destroyed the red cell membrane. Intravenous administration to rabbits has not affected the plasma clotting time. Rod-like CNC are more resistant, and the disc-like particles are more susceptible to degradation under the influence of cellulases.


Subject(s)
Biocompatible Materials/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Acetylation , Animals , Biocompatible Materials/toxicity , Blood Coagulation/drug effects , Cellulose/toxicity , Female , Gossypium/chemistry , Hemolysis/drug effects , Humans , Male , Mice , Nanoparticles/toxicity , Rabbits
7.
Carbohydr Polym ; 247: 116704, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32829832

ABSTRACT

There exists a high demand for simple and affordable blood glucose monitoring methods. For this purpose, new generations of biosensors are being developed for possible in vivo or dermal use. We present (non)sulphated cellulose nanocrystal/magnetite thin films to act as dermal and oral glucose biosensors. The biocompatible (N-CNC)-Fe3O4 and (S-CNC)-Fe3O4 hybrid systems exhibit peroxidase-like activity, indicated by an almost instant color change when in the presence of glucose and ABTS. Both types of biosensors detect glucose concentrations as low as 5 mM (which corresponds to the level of glucose in biological fluids), with (S-CNC)-Fe3O4 being 1.5 - 2 times as sensitive as (N-CNC)-Fe3O4. Hybrid catalytic activity is more pronounced at room temperature and in acidic environments. The hybrids can therefore be used to determine glucose levels by using sweat and saliva - non-blood bodily secretions which tend to be slightly to moderately acidic and have relatively low glucose levels.


Subject(s)
Biosensing Techniques/methods , Blood Glucose Self-Monitoring/methods , Cellulose/chemistry , Ferrosoferric Oxide/chemistry , Glucose/analysis , Nanoparticles/chemistry , Oxidation-Reduction
8.
RSC Adv ; 10(58): 35031-35038, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35515643

ABSTRACT

Both cellulose nanocrystals and gold nanoparticles show immense potential for biological and chemical applications. Gold nanoparticles, which tend to aggregate, are hybridized with cellulose nanocrystals to form stable inorganic-organic hybrids in which nanocellulose acts as a green supporting material for the catalytically active gold nanoparticles. A green synthesis approach was taken, and hydrothermal treatment was used to reduce electrostatic repulsion between the gold nanoparticles and the cellulose nanocrystals to promote heteroaggregation instead of homoaggregation. AFM analysis showed hybrid films to be hygroscopic, suggesting that they would respond to changes in humidity. Laser diffraction and fluorescence quenching were used to determine how hybrid films respond to changes in humidity. Hybrid films were found to respond to changes in humidity quickly, reversibly, and autonomously, making them ideal for use as or in a humidity sensor. Gold nanoparticles were shown to enhance the hybrid response to ambient moisture, causing them to show a linear dependence on changes in humidity, making the hybrid controllable, highly sensitive, and a viable prospective material for humidity sensing applications.

9.
Int J Biol Macromol ; 145: 936-943, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31669272

ABSTRACT

Cationic polymers are of interest as the basis for obtaining various biomaterials. Hydrophilic biopolymers and their modification products are of main interest. Biocompatibility is the prime criterion that makes this material usable for said purposes. In this research, hydroxyethyl starch (HES) was used as a basis for synthesis of aminodeoxy derivatives, containing n-butylamin (BA) and dibutylamin (DBA) fragments. Bromodeoxy HES was an intermediate compound. The structure of synthesized polymers was confirmed with NMR, elemental analysis and FTIR methods. The derivatives with 0.6 and 0.9 degree of substitution were tested for compatibility with blood. The research showed that HES base does not have an anticoagulation activity, does not affect human platelet aggregation and in concentrations up to 10 mg/mL of cell suspension in a buffer solution does not destroy red blood cell membrane, and therefore can be used as a component of drug delivery systems. Addition of aminodeoxy derivatives of HES hindered development of ADP-induced platelet aggregation. Derivatives of HES-DBA and HES-BA0.9 may also be of interest, but their concentration must not exceed 1 * 10-5 mg/mL of blood. Biodegradation of HES cationic derivatives were analyzed through identification of reducing sugars after treatment with amylase and pancreatin.


Subject(s)
Anticoagulants/pharmacology , Hydroxyethyl Starch Derivatives/chemical synthesis , Hydroxyethyl Starch Derivatives/pharmacology , Platelet Aggregation/drug effects , Starch/analogs & derivatives , Amylases , Biocompatible Materials , Biopolymers/chemistry , Blood Coagulation/drug effects , Butylamines , Hemolysis , Humans , Materials Testing , Molecular Weight , Pancreatin
10.
Carbohydr Polym ; 200: 162-172, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30177154

ABSTRACT

One possible way of obtaining cellulose nanocrystals and aqueous sols with novel properties is based on modification of supramolecular structure of the polysaccharide. This modification involves rearrangements of hydrogen bonds and has an effect on polymer morphology, formation of surface reactive sites and interface interactions. Disc-like nanocrystals of cellulose II were prepared by solvolysis of regenerated cellulose in acetic acid/octanol medium in the presence of 0.4 mol% of phosphotungstic acid. The starting cellulose samples were dissolved and regenerated in the NaOH/thiourea system. Cellulose nanocrystals were studied by transmission electron microscopy, atomic force microscopy, dynamic light scattering, FTIR spectroscopy, XRD and thermogravimetric analysis. Colloidal stability of aqueous suspensions of cellulose nanocrystals in the presence of electrolyte (KCl) was studied. Their acid-base properties were revealed using potentiometric titration. The influence of electrolyte concentration on dynamic viscosity of the obtained hydrosols and their ability to show birefringence was established.

SELECTION OF CITATIONS
SEARCH DETAIL
...