Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 359(6378)2018 02 23.
Article in English | MEDLINE | ID: mdl-29472454

ABSTRACT

Temperature records and model predictions demonstrate that deep soils warm at the same rate as surface soils, contrary to Xiao et al's assertions. In response to Xiao et al's critique of our Q10 analysis, we present the results with all data points included, which show Q10 values of >2 throughout the soil profile, indicating that all soil depths responded to warming.


Subject(s)
Carbon Cycle , Soil , Carbon , Soil Microbiology , Temperature
2.
Sci Total Environ ; 613-614: 342-351, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28917173

ABSTRACT

Soils are a globally important reservoir of organic carbon. There is a growing understanding that interactions with soil mineral phases contribute to the accumulation and retention of otherwise degradable organic matter (OM) in soils and sediments. However, the bioavailability of organic compounds in mineral-organic-associations (MOAs), especially under varying environmental conditions is not well known. To assess the impact of mineral association and warming on the decomposition of an easily respirable organic substrate (glucose), we conducted a series of laboratory incubations at different temperatures with field-collected soils from 10 to 20cm, 50-60cm, and 80-90cm depth. We added 13C-labeled glucose either directly to native soil or sorbed to one of two synthetic iron (hydr)oxide phases (goethite and ferrihydrite) that differ in crystallinity and affinity for sorbing glucose. We found that: (1) association with the Fe (hydr)oxide minerals reduced the decomposition rate of glucose by >99.5% relative to rate of decomposition for free glucose in soil; (2) the respiration rate per gram carbon did not differ appreciably with depth, suggesting a similar degree of decomposability for native C across depths and that under the incubation conditions total carbon availability represents the principal limitation on respiration under these conditions as opposed to reduced abundance of decomposers or moisture and oxygen limitations; (3) addition of free glucose enhanced native carbon respiration at all soil depths with the largest effect at 50-60cm; (4) in general respiration of the organo-mineral complex (glucose and iron-(hydr)oxide) was less temperature sensitive than was respiration of native carbon; (5) the addition of organic free mineral decreased the rate of soil respiration in the intermediate 50-60cm depth soil. The results emphasize the key role of MOAs in regulating the fluxes of carbon from soils to the atmosphere and in turn the stocks of soil carbon.

3.
Science ; 355(6332): 1420-1423, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28280251

ABSTRACT

Soil organic carbon harbors three times as much carbon as Earth's atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.

4.
Nature ; 519(7543): 339-43, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25731165

ABSTRACT

The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing, calculated as the difference between estimates of the Earth's radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.19 W m(-2) (ref. 2). However, despite widespread scientific discussion and modelling of the climate impacts of well-mixed greenhouse gases, there is little direct observational evidence of the radiative impact of increasing atmospheric CO2. Here we present observationally based evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2. The time series of this forcing at the two locations-the Southern Great Plains and the North Slope of Alaska-are derived from Atmospheric Emitted Radiance Interferometer spectra together with ancillary measurements and thoroughly corroborated radiative transfer calculations. The time series both show statistically significant trends of 0.2 W m(-2) per decade (with respective uncertainties of ±0.06 W m(-2) per decade and ±0.07 W m(-2) per decade) and have seasonal ranges of 0.1-0.2 W m(-2). This is approximately ten per cent of the trend in downwelling longwave radiation. These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels, mediated by temporal variations due to photosynthesis and respiration, are affecting the surface energy balance.


Subject(s)
Carbon Dioxide , Infrared Rays , Observation , Alaska , Atmosphere/chemistry , Carbon Dioxide/analysis , Cell Respiration , Greenhouse Effect/statistics & numerical data , Models, Theoretical , Photosynthesis , Seasons , Time Factors
6.
New Phytol ; 184(2): 387-398, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19694965

ABSTRACT

* We used an inadvertent whole-ecosystem 14C label at a temperate forest in Oak Ridge, Tennessee, USA to develop a model (Radix1.0) of fine-root dynamics. Radix simulates two live-root pools, two dead-root pools, non-normally distributed root mortality turnover times, a stored carbon (C) pool, and seasonal growth and respiration patterns. * We applied Radix to analyze measurements from two root size classes (< 0.5 and 0.5-2.0 mm diameter) and three soil-depth increments (O horizon, 0-15 cm and 30-60 cm). * Predicted live-root turnover times were < 1 yr and approximately 10 yr for short- and long-lived pools, respectively. Dead-root pools had decomposition turnover times of approximately 2 yr and approximately 10 yr. Realistic characterization of C flows through fine roots requires a model with two live fine-root populations, two dead fine-root pools, and root respiration. These are the first fine-root turnover time estimates that take into account respiration, storage, seasonal growth patterns, and non-normal turnover time distributions. * The presence of a root population with decadal turnover times implies a lower amount of belowground net primary production used to grow fine-root tissue than is currently predicted by models with a single annual turnover pool.


Subject(s)
Carbon/metabolism , Cell Respiration , Plant Roots/growth & development , Trees/growth & development , Carbon Isotopes , Ecosystem , Isotope Labeling/methods , Models, Biological , Plant Roots/metabolism , Seasons , Tennessee , Time Factors , Trees/metabolism
7.
New Phytol ; 172(3): 523-35, 2006.
Article in English | MEDLINE | ID: mdl-17083682

ABSTRACT

Characterization of turnover times of fine roots is essential to understanding patterns of carbon allocation in plants and describing forest C cycling. We used the rate of decline in the ratio of 14C to 12C in a mature hardwood forest, enriched by an inadvertent 14C pulse, to investigate fine-root turnover and its relationship with fine-root diameter and soil depth. Biomass and Delta14C values were determined for fine roots collected during three consecutive winters from four sites, by depth, diameter size classes (< 0.5 or 0.5-2 mm), and live-or-dead status. Live-root pools retained significant 14C enrichment over 3 yr, demonstrating a mean turnover time on the order of years. However, elevated Delta14C values in dead-root pools within 18 months of the pulse indicated an additional component of live roots with short turnover times (months). Our results challenge assumptions of a single live fine-root pool with a unimodal and normal age distribution. Live fine roots < 0.5 mm and those near the surface, especially those in the O horizon, had more rapid turnover than 0.5-2 mm roots and deeper roots, respectively.


Subject(s)
Carbon/metabolism , Plant Roots/anatomy & histology , Plant Roots/metabolism , Soil , Trees/metabolism , Biomass , Carbon Radioisotopes/metabolism , Ecosystem , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...