Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 7: 635, 2016.
Article in English | MEDLINE | ID: mdl-27242838

ABSTRACT

Plastidial transglutaminase is one of the most promising enzymes in chloroplast bioenergetics due to its link with polyamine pathways and the cross talk with signals such as Ca(2+) and GTP. Here, we show the effect of the increase of transglutaminase activity in Arabidopsis by using genetic transformation techniques. These lines fulfill their biological cycle normally (normal growth in soil, production of viable seeds) and show a relatively mild increase in transglutaminase activity (127%). These overexpressors of transglutaminase (OE TGase) have an extended stroma thylakoid network (71% higher number of PSIIß centers), similar chlorophyll content (-4%), higher linear electron flow (+13%), and higher threshold of photoprotection activation (∼100%). On the other hand OE TGase showed a reduced maximum photochemistry of PSII (-6.5%), a smaller antenna per photosystem II (-25%), a lower photoprotective "energization" quenching or qE (-77% at 490 µmol photons m(-2) s(-1)) due to a higher threshold of qE activation and slightly lower light induced proton motive force (-17%). The role of the polyamines and of the transglutaminase in the regulation of chemiosmosis and photoprotection in chloroplasts is discussed.

2.
PLoS One ; 7(7): e41979, 2012.
Article in English | MEDLINE | ID: mdl-22870182

ABSTRACT

Transglutaminases function as biological glues in animal cells, plant cells and microbes. In energy producing organelles such as chloroplasts the presence of transglutaminases was recently confirmed. Furthermore, a plastidial transglutaminase has been cloned from maize and the first plants overexpressing tgz are available (Nicotiana tabacum TGZ OE). Our hypothesis is that the overexpression of plastidal transglutaminase will alter photosynthesis via increased polyamination of the antenna of photosystem II. We have used standard analytical tools to separate the antenna from photosystem II in wild type and modified plants, 6 specific antibodies against LHCbs to confirm their presence and sensitive HPLC method to quantify the polyamination level of these proteins. We report that bound spermidine and spermine were significantly increased (∼80%) in overexpressors. Moreover, we used recent advances in in vivo probing to study simultaneously the proton and electron circuit of thylakoids. Under physiological conditions overexpressors show a 3-fold higher sensitivity of the antenna down regulation loop (qE) to the elicitor (luminal protons) which is estimated as the ΔpH component of thylakoidal proton motive force. In addition, photosystem (hyper-PSIIα) with an exceptionally high antenna (large absorption cross section), accumulate in transglutaminase over expressers doubling the rate constant of light energy utilization (Kα) and promoting thylakoid membrane stacking. Polyamination of antenna proteins is a previously unrecognized mechanism for the modulation of the size (antenna absorption cross section) and sensitivity of photosystem II to down regulation. Future research will reveal which peptides and which residues of the antenna are responsible for such effects.


Subject(s)
Photosystem II Protein Complex/metabolism , Plastids/enzymology , Thylakoids/metabolism , Transglutaminases/metabolism , Amination/physiology , Electron Transport/physiology , Nicotiana/enzymology , Nicotiana/metabolism
3.
Physiol Plant ; 114(1): 135-141, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11982944

ABSTRACT

We have studied photoperiodic control and the effect of phytochrome photoconversion at the end-of-day (EOD) on polyamine (PA) accumulation in petal explants of Araujia sericifera. Petals from immature flowers were cultured under long (LD) and short (SD) days. Light was provided by Gro-lux fluorescent lamps (90-100 &mgr;mol m-2 s-1). Red (R), far red (FR), red followed by far-red (R-FR) and far-red followed by red (FR-R) light treatments were applied daily at the end of the photoperiod. The free and bound putrescine (Put), spermidine (Spd) and spermine (Spm) fractions in petal explants were determined 40 days after the beginning of the culture. We also aimed to clarify the involvement of PA changes by using two inhibitors of PA biosynthesis: D-l-alpha-difluoromethylarginine (DFMA) and methylglyoxal bis(guanylhydrazone) (MGBG). We found PA accumulation to be under photoperiodic control, and the inhibitory effect of DFMA on this accumulation suggests that arginine decarboxylase (ADC) is the major pathway for Put biosynthesis. Polyamine levels were higher under LD, mainly as a result of the accumulation of free and bound Put. FR-EOD treatment, which dramatically reduced the R : FR ratio after LD, increased the accumulation of PA, mainly as free Put and free and bound Spd. Sequential R-FR and FR-R-EOD treatments strongly increased bound Spd. The concentration of MGBG used increased total PA accumulation, mainly as Put. However, all EOD light treatments dramatically reduced Put accumulation in the presence of MGBG. This may be due to a dual role of FR light in PA accumulation: (1) FR per se stimulates PA production, probably via ADC, and (2) in the presence of MGBG, FR inhibits Put accumulation, probably via ethylene production.

4.
Physiol Plant ; 111(3): 405-411, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11240926

ABSTRACT

The effects of photoperiod, light quality and end-of-day (EOD) phytochrome photoconversion on somatic embryogenesis (SE) of Araujia sericifera petals have been studied. Petals from immature flowers were cultured under 8- and 16-h photoperiods using Gro-lux fluorescent lamps. The photon fluence rate was 90-100 µmol m-2 s-1 and the red (R):far-red (FR) ratio was 98. R, FR, R followed by FR (R-FR) and FR followed by R (FR-R) light treatments were applied for 3 weeks at the end of the photoperiods. In a set of experiments, DL-alpha-difluoromethylarginine (DFMA) or methylglyoxal bis(guanylhydrazone) (MGBG), both inhibitors of polyamine biosynthesis, were added to the culture medium in order to study the involvement of polyamine metabolism. The level of SE was the same in long (LD) and short (SD) days. Thus, the light effect was accomplished after 8 h. All EOD treatments that decreased the Pfr level inhibited SE when applied after SD, but not after LD. The FR-R treatment after LD caused an additional stimulatory effect on SE, even in the presence of polyamine inhibitors. DFMA inhibited SE in both SD and LD, but MGBG did not modify SE in either SD or LD. The R, FR and R-FR treatments did not alter the level of SE when applied after LD in the presence of DFMA or MGBG. However, these treatments decreased SE after SD when the medium contained polyamine inhibitors. Our results suggest that Gro-lux lamps, which produce an extremely high R:FR ratio, promote SE in A. sericifera and a timing response to phytochrome photoconversion during photoperiodic induction. Thus, our data corroborate the involvement of phytochromes and polyamines in SE in A. sericifera, which responded as a light-dominant long-day plant.

SELECTION OF CITATIONS
SEARCH DETAIL
...