Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(14): 3797-3800, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37450753

ABSTRACT

We show that optical moiré lattices enable the existence of vortex solitons of different types in self-focusing Kerr media. We address the properties of such states both in lattices having commensurate and incommensurate geometries (i.e., constructed with Pythagorean and non-Pythagorean twist angles, respectively), in the different regimes that occur below and above the localization-delocalization transition. We find that the threshold power required for the formation of vortex solitons strongly depends on the twist angle and, also, that the families of solitons exhibit intervals where their power is a nearly linear function of the propagation constant and they exhibit a strong stability. Also, in the incommensurate phase above the localization-delocalization transition, we found stable embedded vortex solitons whose propagation constants belong to the linear spectral domain of the system.

2.
Nat Commun ; 13(1): 6738, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36347871

ABSTRACT

Continuous and quantized transports are profoundly different. The latter is determined by the global rather than local properties of a system, it exhibits unique topological features, and its ubiquitous nature causes its occurrence in many areas of science. Here we report the first observation of fully-two-dimensional Thouless pumping of light by bulk modes in a purpose-designed tilted moiré lattices imprinted in a photorefractive crystal. Pumping in such unconfined system occurs due to the longitudinal adiabatic and periodic modulation of the refractive index. The topological nature of this phenomenon manifests itself in the magnitude and direction of shift of the beam center-of-mass averaged over one pumping cycle. Our experimental results are supported by systematic numerical simulations in the frames of the continuous Schrödinger equation governing propagation of probe light beam in optically-induced photorefractive moiré lattice. Our system affords a powerful platform for the exploration of topological pumping in tunable commensurate and incommensurate geometries.

3.
Phys Rev Lett ; 129(12): 123903, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179208

ABSTRACT

We address the formation of topological states in twisted circular waveguide arrays and find that twisting leads to important differences of the fundamental properties of new vortex solitons with opposite topological charges that arise in the nonlinear regime. We find that such system features the rare property that clockwise and counterclockwise vortex states are nonequivalent. Focusing on arrays with C_{6v} discrete rotation symmetry, we find that a longitudinal twist stabilizes the vortex solitons with the lowest topological charges m=±1, which are always unstable in untwisted arrays with the same symmetry. Twisting also leads to the appearance of instability domains for otherwise stable solitons with m=±2 and generates vortex modes with topological charges m=±3 that are forbidden in untwisted arrays. By and large, we establish a rigorous relation between the discrete rotation symmetry of the array, its twist direction, and the possible soliton topological charges.

4.
Phys Rev Lett ; 127(16): 163902, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34723575

ABSTRACT

We predict that photonic moiré patterns created by two mutually twisted periodic sublattices in quadratic nonlinear media allow the formation of parametric solitons under conditions that are strongly impacted by the geometry of the pattern. The question addressed here is how the geometry affects the joint trapping of multiple parametrically coupled waves into a single soliton state. We show that above the localization-delocalization transition the threshold power for soliton excitation is drastically reduced relative to uniform media. Also, the geometry of the moiré pattern shifts the condition for phase matching between the waves to the value that matches the edges of the eigenmode bands, thereby shifting the properties of all soliton families. Moreover, the phase-mismatch bandwidth for soliton generation is dramatically broadened in the moiré patterns relative to latticeless structures.

5.
Opt Lett ; 46(10): 2545-2548, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33988631

ABSTRACT

We show that anisotropic planar anti-guiding waveguide structures with two radiation channels toward the surrounding cladding materials can support unidirectional guided resonances (UGRs), where radiation is canceled in one of the radiation channels and redirected into the other. Their formation is subtle as it requires breaking the so-called polar anisotropy-symmetry of the structures. Then, UGRs appear at specific wavelengths and light propagation directions, are robust, and are characterized by phase singularities in the channel in which radiation is canceled. The mechanism we describe allows for ready selection of the radiation direction, as well as tuning of the wavelength and the propagation angle at which UGRs occur.

6.
Phys Rev Lett ; 126(6): 063903, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33635689

ABSTRACT

We uncover a novel and robust phenomenon that causes the gradual self-replication of spatiotemporal Kerr cavity patterns in cylindrical microresonators. These patterns are inherently synchronized multifrequency combs. Under proper conditions, the axially localized nature of the patterns leads to a fundamental drift instability that induces transitions among patterns with a different number of rows. Self-replications, thus, result in the stepwise addition or removal of individual combs along the cylinder's axis. Transitions occur in a fully reversible and, consequently, deterministic way. The phenomenon puts forward a novel paradigm for Kerr frequency comb formation and reveals important insights into the physics of multidimensional nonlinear patterns.

7.
Opt Lett ; 46(1): 58-61, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33362015

ABSTRACT

We show that slow light in hyperbolic waveguides is linked to topological transitions in the dispersion diagram as the film thickness changes. The effect appears in symmetric planar structures with type II films, whose optical axis (OA) lies parallel to the waveguide interfaces. The transitions are mediated by elliptical mode branches that coalesce along the OA with anomalously ordered hyperbolic mode branches, resulting in a saddle point. When the thickness of the film increases further, the merged branch starts a transition to hyperbolic normally ordered modes propagating orthogonally to the OA. In this process, the saddle point transforms into a branch point featuring slow light for a broad range of thicknesses, and a new branch of ghost waves appears.

8.
Science ; 370(6517): 701-704, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33154138

ABSTRACT

A hallmark feature of topological insulators is robust edge transport that is impervious to scattering at defects and lattice disorder. We demonstrate a topological system, using a photonic platform, in which the existence of the topological phase is brought about by optical nonlinearity. The lattice structure remains topologically trivial in the linear regime, but as the optical power is increased above a certain power threshold, the system is driven into the topologically nontrivial regime. This transition is marked by the transient emergence of a protected unidirectional transport channel along the edge of the structure. Our work studies topological properties of matter in the nonlinear regime, providing a possible route for the development of compact devices that harness topological features in an on-demand fashion.

9.
Nature ; 577(7788): 42-46, 2020 01.
Article in English | MEDLINE | ID: mdl-31853062

ABSTRACT

Moiré lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moiré lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers1,2, graphene-graphene layers3,4 and graphene quasicrystals on a silicon carbide surface5. The recent surge of interest in moiré lattices arises from the possibility of exploring many salient physical phenomena in such systems; examples include commensurable-incommensurable transitions and topological defects2, the emergence of insulating states owing to band flattening3,6, unconventional superconductivity4 controlled by the rotation angle7,8, the quantum Hall effect9, the realization of non-Abelian gauge potentials10 and the appearance of quasicrystals at special rotation angles11. A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moiré lattices. Here we experimentally create two-dimensional photonic moiré lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flat-band physics6, in contrast to previous schemes based on light diffusion in optical quasicrystals12, where disorder is required13 for the onset of Anderson localization14 (that is, wave localization in random media). Using commensurable and incommensurable moiré patterns, we experimentally demonstrate the two-dimensional localization-delocalization transition of light. Moiré lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.

10.
Phys Rev Lett ; 123(13): 133902, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31697553

ABSTRACT

We introduce a new class of stable light bullets that form in twisted waveguide arrays pumped with ultrashort pulses, where twisting offers a powerful knob to tune the properties of localized states. We find that, above a critical twist, three-dimensional wave packets are unambiguously stabilized, with no minimum energy threshold. As a consequence, when the higher-order perturbations that accompany ultrashort pulse propagation are at play, the bullets dynamically adjust and sweep along stable branches. Therefore, they are predicted to feature an unprecedented experimental robustness.

11.
Opt Lett ; 44(21): 5362-5365, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31675007

ABSTRACT

Radiation of leaky modes existing in anisotropic waveguides can be cancelled by destructive interference at special propagation directions relative to the optical axis orientation, resulting in fully bound states surrounded by radiative modes. Here we study the variation of the loci of such special directions in terms of the waveguide constitutive parameters. We show that the angular loci of the bound states are sensitive to several design parameters, allowing bound states to exist for a broad range of angular directions and wavelengths and suggesting applications in filtering and sensing.

12.
Phys Rev Lett ; 122(19): 193902, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31144921

ABSTRACT

We show that metastable ring-shaped clusters can be constructed from two-dimensional quantum droplets in systems described by the Gross-Pitaevskii equations augmented with Lee-Huang-Yang quantum corrections. The clusters exhibit dynamical behavior ranging from contraction to rotation with simultaneous periodic pulsations, or expansion, depending on the initial radius of the necklace pattern and phase shift between adjacent quantum droplets. We show that, using an energy-minimization analysis, one can predict equilibrium values of the cluster radius that correspond to rotation without radial pulsations. In such a regime, the clusters evolve as metastable states, withstanding abrupt variations in the underlying scattering lengths and keeping their azimuthal symmetry in the course of evolution, even in the presence of considerable perturbations.

13.
Phys Rev Lett ; 121(10): 103903, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30240261

ABSTRACT

We introduce a new class of self-sustained states, which may exist as single solitons or form multisoliton clusters, in driven passive cylindrical microresonators. Remarkably, such states are stabilized by the radiation they emit, which strongly breaks spatial symmetry and leads to the appearance of long polychromatic conical tails. The latter induce long-range soliton interactions that make possible the formation of clusters, which can be stable if their spatial arrangement is noncollinear with the soliton rotation direction in the microcavity. The clusters are intrinsically two dimensional and, also, spatially rich. The mechanism behind the formation of the clusters is explained using soliton clustering theory. Our results bring fundamental understanding of a new class of multidimensional cavity solitons and may lead to the development of monolithic multisoliton sources.

14.
Opt Lett ; 43(5): 979-982, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489760

ABSTRACT

We address a pair of vertically coupled microring resonators with gain and loss pumped by a single-frequency field. Coupling between microrings results in a twofold splitting of the single microring resonance that increases when gain and losses decrease, giving rise to two cavity soliton (CS) families. We show that the existence regions of CSs are tunable and that both CS families can be stable in the presence of an imbalance between gain and losses in the two microrings. These findings enable experimental realization of frequency combs in configurations with active microrings and contribute toward the realization of compact multisoliton comb sources.

15.
Opt Lett ; 43(3): 575-578, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29400844

ABSTRACT

We address a 2D parity-time (PT)-symmetric structure built as a chain of waveguides, where all waveguides except for the central one are conservative, while the central one is divided into two halves with gain and losses. We show that such a system admits bound states in the continuum (BICs) whose properties vary drastically with the orientation of the line separating amplifying and absorbing domains, which sets the direction of internal energy flow. When the flow is perpendicular to the chain of the waveguides, narrow BICs emerge when the standard defect mode, which is initially located in the finite gap, collides with another mode in a standard symmetry breaking scenario, and its propagation constant enters the continuous spectrum upon increase of the strength of gain/losses. In contrast, when the energy flow is parallel to the chain of the waveguides, the symmetry gets broken even for a small strength of the gain/losses. In that case, the most rapidly growing mode emerges inside the continuous spectrum and realizes a weakly localized BIC. All BICs found here are the most rapidly growing modes; therefore, they can be excited from noisy inputs and, importantly, should dominate the beam dynamics in experiments.

16.
Opt Lett ; 42(3): 446-449, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28146498

ABSTRACT

We show that media with inhomogeneous defocusing cubic nonlinearity growing toward the periphery can support a variety of stable vortex clusters nested in a common localized envelope. Nonrotating symmetric clusters are built from an even number of vortices with opposite topological charges, located at equal distances from the origin. Rotation makes the clusters strongly asymmetric, as the centrifugal force shifts some vortices to the periphery, while others approach the origin, depending on the topological charge. We obtain such asymmetric clusters as stationary states in the rotating coordinate frame, identify their existence domains, and show that the rotation may stabilize some of them.

17.
Phys Rev Lett ; 117(21): 215301, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27911543

ABSTRACT

We address Bloch oscillations of a spin-orbit coupled atom in periodic potentials of two types: optical and Zeeman lattices. We show that in optical lattices the spin-orbit coupling allows controlling the direction of atomic motion and may lead to complete suppression of the oscillations at specific values of the coupling strength. In Zeeman lattices the energy bands are found to cross each other at the boundaries of the Brillouin zone, resulting in period doubling of the oscillations. In all cases, the oscillations are accompanied by rotation of the pseudospin, with a dynamics that is determined by the strength of the spin-orbit coupling. The predicted effects are discussed also in terms of a Wannier-Stark ladder, which in optical lattices consist of two mutually shifted equidistant subladders.

18.
Sci Rep ; 6: 32546, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27586011

ABSTRACT

We introduce a composite optical lattice created by two mutually rotated square patterns and allowing observation of continuous transformation between incommensurate and completely periodic structures upon variation of the rotation angle θ. Such lattices acquire periodicity only for rotation angles cos θ = a/c, sin θ = b/c, set by Pythagorean triples of natural numbers (a, b, c). While linear eigenmodes supported by lattices associated with Pythagorean triples are always extended, composite patterns generated for intermediate rotation angles allow observation of the localization-delocalization transition of eigenmodes upon modification of the relative strength of two sublattices forming the composite pattern. Sharp delocalization of supported modes for certain θ values can be used for visualization of Pythagorean triples. The effects predicted here are general and also take place in composite structures generated by two rotated hexagonal lattices.

19.
Opt Lett ; 41(18): 4348-51, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27628394

ABSTRACT

We address the transverse mobility of spatial solitons in competing parity-time-symmetric linear and nonlinear lattices. The competition between out-of-phase linear and nonlinear lattices results in a drastic mobility enhancement within a range of soliton energies. We show that within such a range, the addition of even a small imaginary part in the linear potential makes soliton mobility strongly asymmetric. For a given initial phase tilt, the velocity of soliton motion grows with an increase of the balanced gain/losses. In this regime of enhanced mobility, tilted solitons can efficiently drag other solitons that were initially at rest to form moving soliton pairs.

20.
Phys Rev Lett ; 115(19): 193902, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26588383

ABSTRACT

We introduce partially-parity-time (pPT)-symmetric azimuthal potentials composed from individual PT-symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that in such potential excitations carrying topological dislocations exhibit different dynamics for different directions of energy circulation in the initial field distribution. Such nonconservative ratchetlike structures support rich families of stable vortex solitons in cubic nonlinear media, whose properties depend on the sign of the topological charge due to the nonequivalence of azimuthal directions. In contrast, oppositely charged vortex solitons remain equivalent in similar fully-PT-symmetric potentials. The vortex solitons in the pPT- and PT-symmetric potentials are shown to feature qualitatively different internal current distributions, which are described by different discrete rotation symmetries of the intensity profiles.

SELECTION OF CITATIONS
SEARCH DETAIL
...