Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 192: 106229, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866196

ABSTRACT

Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that frequently co-occur in coastal environments. These contaminants can have negative impacts on the health and stability of marine and coastal ecosystems, affecting both the organisms themselves and the humans who consume them. A coastal industrial park in central Chile, housing a coal thermal power plant and other industrial activities, contributes to such pollution of coastal waters; however, neither the spatial alongshore distribution of heavy metals and PAHs, nor an assessment of their ecological effects on the biota have been systematically documented to date. In this paper, we present evidence regarding the direct negative effect of contamination by heavy metals and PAHs on the early life stages of kelps-being extremely harmful to their population persistence near highly polluted sites-as well as the indirect effects of their transference through the food web to higher trophic levels, leading to negative consequences for the feeding intake, growth, fertility, and larval development of marine herbivores that consume the contaminated seaweed. Likewise, the dispersion of contaminants by ocean currents can exacerbate the effects of pollution, having an adverse influence on marine ecosystem health even at sites far from the pollution source. Therefore, it is necessary to investigate the distribution patterns and extent of pollution along the coast to understand the impact of heavy metals and PAHs pollution on seaweed populations and the food web. It is considered critical for the development of effective environmental policies and regulations to protect these ecosystems and the people who depend on them.


Subject(s)
Kelp , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Seaweed , Water Pollutants, Chemical , Humans , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring , Herbivory , Metals, Heavy/toxicity , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Geologic Sediments
2.
Plants (Basel) ; 12(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36987029

ABSTRACT

Taking into consideration climate change scenarios, marine contamination, and a constantly expanding world population, seaweed aquaculture has become an important option for the large-scale production of high-quality biomass. Due to existing biological knowledge of Gracilaria chilensis, several cultivation strategies have been established for obtaining diverse biomolecules (lipids, fatty acids, pigments, among others) with nutraceutical properties. In this research, indoor and outdoor cultivation methodologies were applied to generate high biomass of G. chilensis with positive quality for productive purposes, where the quality was determined according to the concentrations of lipoperoxides and phenolic compounds and the total antioxidant capacity (TAC). The results showed that G. chilensis cultures, which were fertilized for three weeks with Basfoliar® Aktiv (BF) at concentrations of 0.05-1% v/v, obtained high biomass (1-1.3 kg m-2) and DGR (0.35-4.66% d-1), low lipoperoxides (0.5-2.8 µmol g-1 DT), and high phenolic compounds (0.4-0.92 µ eq. GA g-1 FT) and TAC (5-7.5 nmol eq. TROLOX g-1 FT) as compared with other culture media. Lower stress was determined under indoor cultures, due to the operative control of diverse physicochemical stressor parameters (T°, light intensity, photoperiod, among others). Therefore, the cultures developed allow scaling the biomass in productive terms and are suitable for obtaining compounds of interest.

SELECTION OF CITATIONS
SEARCH DETAIL
...