Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38895243

ABSTRACT

Mounting evidence implicates trans-synaptic connectome-based spread as a shared mechanism behind different tauopathic conditions, yet also suggests there is divergent spatiotemporal progression between them. A potential parsimonious explanation for this apparent contradiction could be that different conditions incur differential rates and directional biases in tau transmission along fiber tracts. In this meta-analysis we closely examined this hypothesis and quantitatively tested it using spatiotemporal tau pathology patterns from 11 distinct models across 4 experimental studies. For this purpose we developed and employed the NexIS:dir, a mathematical model that extends previous work by incorporating net directionality. Our data unambiguously supports the directional transmission hypothesis. First, retrograde bias is an unambiguously better predictor of tau progression than anterograde bias. Second, while spread exhibits retrograde character, the best NexIS:dir models incorporate the mixed effects of both retrograde- and anterograde-directed spread, with notable tau-strain-specific differences. We also found a nontrivial association between directionality bias and tau strain aggressiveness, with more virulent strains exhibiting less retrograde character. Taken together, our study implicates directional transmission bias in tau transmission along fiber tracts as a general feature of tauopathy spread and a strong candidate explanation for the diversity of spatiotemporal tau progression between conditions. This simple and parsimonious mechanism may potentially fill a critical gap in our knowledge of the spatiotemporal ramification of divergent tauopathies.

2.
bioRxiv ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38559176

ABSTRACT

It is well known that Aß and tau proteins are deposited stereotypically in brain regions to cause Alzheimer's disease. The interaction of amyloid and tau in neurodegenerative diseases is a central feature and key to understanding AD pathophysiology. However their mechanisms are controversial, and many aspects do not fit current theories that rely on cell-autonomous factors. While cell culture and animal studies point to various interaction mechanisms between amyloid and tau, their causal direction and mode (local, remote or network-mediated) remain unknown in human subjects. Further, cross-protein interaction is yet to be reconciled with canonical observations that the two species do not co-localize significantly either in space or in time, and do not target the same neuronal populations. To answer these questions quantitatively, in this study we employed a mathematical reaction-diffusion model encoding the biophysical mechanisms underlying self-assembly, trans-neuronal network propagation and enzymtic cross-species coupling of amyloid and tau. We first established that the spatiotemporal evolution of theoretical tau and Aß correctly predicts empirical patterns of regional Aß, tau and atrophy. Remarkably, the introduction of a 1-way Aß→tau interaction was critical to the models' success. In comparison, both the non-interacting and the 2-way interaction models were significantly worse. We also found that network-mediated spread is essential; alternative modes of spread involving proximity or fiber length fare much worse. This mathematical exposition of the "pas de deux" of co-evolving proteins provides crucial quantitative and whole-brain support to the concept of amyloid-facilitated-tauopathy rather than the classic amyloid-cascade or pure-tau hypotheses, and helps explain certain known but poorly understood aspects of AD.

3.
bioRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496606

ABSTRACT

Brain regions in Alzheimer's (AD) exhibit distinct vulnerability to the disease's hallmark pathology, with the entorhinal cortex and hippocampus succumbing early to tau tangles while others like primary sensory cortices remain resilient. The quest to understand how local/regional genetic factors, pathogenesis, and network-mediated spread of pathology together govern this selective vulnerability (SV) or resilience (SR) is ongoing. Although many risk genes in AD are known from gene association and transgenic studies, it is still not known whether and how their baseline expression signatures confer SV or SR to brain structures. Prior analyses have yielded conflicting results, pointing to a disconnect between the location of genetic risk factors and downstream tau pathology. We hypothesize that a full accounting of genes' role in mediating SV/SR would require the modeling of network-based vulnerability, whereby tau misfolds, aggregates, and propagates along fiber projections. We therefore employed an extended network diffusion model (eNDM) and tested it on tau pathology PET data from 196 AD patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Thus the fitted eNDM model becomes a reference process from which to assess the role of innate genetic factors. Using the residual (observed - model-predicted) tau as a novel target outcome, we obtained its association with 100 top AD risk-genes, whose baseline spatial transcriptional profiles were obtained from the Allen Human Brain Atlas (AHBA). We found that while many risk genes at baseline showed a strong association with regional tau, many more showed a stronger association with residual tau. This suggests that both direct vulnerability, related to the network, as well as network-independent vulnerability, are conferred by risk genes. We then classified risk genes into four classes: network-related SV (SV-NR), network-independent SV (SV-NI), network-related SR (SR-NR), and network-independent SR (SR-NI). Each class has a distinct spatial signature and associated vulnerability to tau. Remarkably, we found from gene-ontology analyses, that genes in these classes were enriched in distinct functional processes and encompassed different functional networks. These findings offer new insights into the factors governing innate vulnerability or resilience in AD pathophysiology and may prove helpful in identifying potential intervention targets.

4.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38076913

ABSTRACT

Neurodegenerative diseases such as Alzheimer's disease (AD) exhibit pathological changes in the brain that proceed in a stereotyped and regionally specific fashion, but the cellular and molecular underpinnings of regional vulnerability are currently poorly understood. Recent work has identified certain subpopulations of neurons in a few focal regions of interest, such as the entorhinal cortex, that are selectively vulnerable to tau pathology in AD. However, the cellular underpinnings of regional susceptibility to tau pathology are currently unknown, primarily because whole-brain maps of a comprehensive collection of cell types have been inaccessible. Here, we deployed a recent cell-type mapping pipeline, Matrix Inversion and Subset Selection (MISS), to determine the brain-wide distributions of pan-hippocampal and neocortical neuronal and non-neuronal cells in the mouse using recently available single-cell RNA sequencing (scRNAseq) data. We then performed a robust set of analyses to identify general principles of cell-type-based selective vulnerability using these cell-type distributions, utilizing 5 transgenic mouse studies that quantified regional tau in 12 distinct PS19 mouse models. Using our approach, which constitutes the broadest exploration of whole-brain selective vulnerability to date, we were able to discover cell types and cell-type classes that conferred vulnerability and resilience to tau pathology. Hippocampal glutamatergic neurons as a whole were strongly positively associated with regional tau deposition, suggesting vulnerability, while cortical glutamatergic and GABAergic neurons were negatively associated. Among glia, we identified oligodendrocytes as the single-most strongly negatively associated cell type, whereas microglia were consistently positively correlated. Strikingly, we found that there was no association between the gene expression relationships between cell types and their vulnerability or resilience to tau pathology. When we looked at the explanatory power of cell types versus GWAS-identified AD risk genes, cell type distributions were consistently more predictive of end-timepoint tau pathology than regional gene expression. To understand the functional enrichment patterns of the genes that were markers of the identified vulnerable or resilient cell types, we performed gene ontology analysis. We found that the genes that are directly correlated to tau pathology are functionally distinct from those that constitutively embody the vulnerable cells. In short, we have demonstrated that regional cell-type composition is a compelling explanation for the selective vulnerability observed in tauopathic diseases at a whole-brain level and is distinct from that conferred by risk genes. These findings may have implications in identifying cell-type-based therapeutic targets.

5.
Cell Rep ; 42(10): 113258, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858469

ABSTRACT

A fundamental neuroscience topic is the link between the brain's molecular, cellular, and cytoarchitectonic properties and structural connectivity. Recent studies relate inter-regional connectivity to gene expression, but the relationship to regional cell-type distributions remains understudied. Here, we utilize whole-brain mapping of neuronal and non-neuronal subtypes via the matrix inversion and subset selection algorithm to model inter-regional connectivity as a function of regional cell-type composition with machine learning. We deployed random forest algorithms for predicting connectivity from cell-type densities, demonstrating surprisingly strong prediction accuracy of cell types in general, and particular non-neuronal cells such as oligodendrocytes. We found evidence of a strong distance dependency in the cell connectivity relationship, with layer-specific excitatory neurons contributing the most for long-range connectivity, while vascular and astroglia were salient for short-range connections. Our results demonstrate a link between cell types and connectivity, providing a roadmap for examining this relationship in other species, including humans.


Subject(s)
Brain Mapping , Brain , Mice , Humans , Animals , Brain Mapping/methods , Brain/physiology , Neurons/physiology , Algorithms , Random Forest
6.
Transl Res ; 254: 13-23, 2023 04.
Article in English | MEDLINE | ID: mdl-36031051

ABSTRACT

With the increasing prevalence of Alzheimer's disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodomal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aß) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. However, given the complex etiology of AD, which involves not only connectome-based spread of protein pathology but also the interactions of many molecular and cellular players over multiple spatiotemporal scales, more robust, complete biophysics models are needed to better understand AD pathophysiology and ultimately provide accurate patient-specific diagnoses and prognoses. Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.


Subject(s)
Alzheimer Disease , Connectome , Humans , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Prognosis
7.
Sci Rep ; 12(1): 21170, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477076

ABSTRACT

The prion-like transsynaptic propagation of misfolded tau along the brain's connectome has previously been modeled using connectome-based network diffusion models. In addition to the connectome, interactions between the general neurological "milieu" in the neurodegenerative brain and proteinopathic species can also contribute to pathology propagation. Such a molecular nexopathy framework posits that the distinct characteristics of neurodegenerative disorders stem from interactions between the network and surrounding molecular players. However, the effects of these modulators remain unquantified. Here, we present Nexopathy in silico ("Nexis"), a quantitative model of tau progression augmenting earlier models by including parameters of pathology propagation defined by the molecular modulators of connectome-based spread. Our Nexis:microglia model provides the first quantitative characterization of this effect on the whole brain by expanding previous models of neuropathology progression by incorporating microglial influence. We show that Trem2, but not microglial homeostasis genes, significantly improved the model's predictive power. Trem2 appears to reduce tau accumulation rate while increasing its interregional spread from the hippocampal seed area, causing higher tau burden in the striatum, pallidum, and contralateral hippocampus. Nexis provides an improved understanding and quantification of microglial contribution to tau propagation and can be flexibly modified to include other modulators of progressive neurodegeneration.


Subject(s)
Neuropathology
8.
Proc Natl Acad Sci U S A ; 119(14): e2111786119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35363567

ABSTRACT

The advent of increasingly sophisticated imaging platforms has allowed for the visualization of the murine nervous system at single-cell resolution. However, current experimental approaches have not yet produced whole-brain maps of a comprehensive set of neuronal and nonneuronal types that approaches the cellular diversity of the mammalian cortex. Here, we aim to fill in this gap in knowledge with an open-source computational pipeline, Matrix Inversion and Subset Selection (MISS), that can infer quantitatively validated distributions of diverse collections of neural cell types at 200-µm resolution using a combination of single-cell RNA sequencing (RNAseq) and in situ hybridization datasets. We rigorously demonstrate the accuracy of MISS against literature expectations. Importantly, we show that gene subset selection, a procedure by which we filter out low-information genes prior to performing deconvolution, is a critical preprocessing step that distinguishes MISS from its predecessors and facilitates the production of cell-type maps with significantly higher accuracy. We also show that MISS is generalizable by generating high-quality cell-type maps from a second independently curated single-cell RNAseq dataset. Together, our results illustrate the viability of computational approaches for determining the spatial distributions of a wide variety of cell types from genetic data alone.


Subject(s)
Brain Mapping , Brain , Neurons , Animals , Brain/cytology , Brain Mapping/methods , Mice , Neurons/classification , Neurons/metabolism , RNA-Seq , Single-Cell Analysis
9.
PLoS Comput Biol ; 17(7): e1009258, 2021 07.
Article in English | MEDLINE | ID: mdl-34314441

ABSTRACT

Defects in axonal transport may partly underpin the differences between the observed pathophysiology of Alzheimer's disease (AD) and that of other non-amyloidogenic tauopathies. Particularly, pathological tau variants may have molecular properties that dysregulate motor proteins responsible for the anterograde-directed transport of tau in a disease-specific fashion. Here we develop the first computational model of tau-modified axonal transport that produces directional biases in the spread of tau pathology. We simulated the spatiotemporal profiles of soluble and insoluble tau species in a multicompartment, two-neuron system using biologically plausible parameters and time scales. Changes in the balance of tau transport feedback parameters can elicit anterograde and retrograde biases in the distributions of soluble and insoluble tau between compartments in the system. Aggregation and fragmentation parameters can also perturb this balance, suggesting a complex interplay between these distinct molecular processes. Critically, we show that the model faithfully recreates the characteristic network spread biases in both AD-like and non-AD-like mouse tauopathy models. Tau transport feedback may therefore help link microscopic differences in tau conformational states and the resulting variety in clinical presentations.


Subject(s)
Axonal Transport/physiology , tau Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Computational Biology , Computer Simulation , Dendrites/metabolism , Disease Models, Animal , Feedback, Physiological , Humans , Mice , Models, Neurological , Neurodegenerative Diseases/metabolism , Protein Conformation , Protein Folding , Solubility , Spatio-Temporal Analysis , Tauopathies/metabolism , tau Proteins/chemistry
10.
Brain Commun ; 2(2): fcaa065, 2020.
Article in English | MEDLINE | ID: mdl-32954322

ABSTRACT

There is enormous clinical value in inferring the brain regions initially atrophied in Parkinson disease for individual patients and understanding its relationship with clinical and genetic risk factors. The aim of this study is to leverage a new seed-inference algorithm demonstrated for Alzheimer's disease to the Parkinsonian context and to cluster patients in meaningful subgroups based on these incipient atrophy patterns. Instead of testing brain regions separately as the likely initiation site for each patient, we solve an L1-penalized optimization problem that can return a more predictive heterogeneous, multi-locus seed patterns. A cluster analysis of the individual seed patterns reveals two distinct subgroups (S1 versus S2). The S1 subgroup is characterized by the involvement of the brainstem and ventral nuclei, and S2 by cortex and striatum. Post hoc analysis in features not included in the clustering shows significant differences between subgroups regarding age of onset and local transcriptional patterns of Parkinson-related genes. Top genes associated with regional microglial abundance are strongly associated with subgroup S1 but not with S2. Our results suggest two distinct aetiological mechanisms operative in Parkinson disease. The interplay between immune-related genes, lysosomal genes, microglial abundance and atrophy initiation sites may explain why the age of onset for patients in S1 is on average 4.5 years later than for those in S2. We highlight and compare the most prominently affected brain regions for both subgroups. Altogether, our findings may improve current screening strategies for early Parkinson onsetters.

11.
Brain ; 141(3): 863-876, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29409009

ABSTRACT

Alzheimer's disease, the most common form of dementia, is characterized by the emergence and spread of senile plaques and neurofibrillary tangles, causing widespread neurodegeneration. Though the progression of Alzheimer's disease is considered to be stereotyped, the significant variability within clinical populations obscures this interpretation on the individual level. Of particular clinical importance is understanding where exactly pathology, e.g. tau, emerges in each patient and how the incipient atrophy pattern relates to future spread of disease. Here we demonstrate a newly developed graph theoretical method of inferring prior disease states in patients with Alzheimer's disease and mild cognitive impairment using an established network diffusion model and an L1-penalized optimization algorithm. Although the 'seeds' of origin using our inference method successfully reproduce known trends in Alzheimer's disease staging on a population level, we observed that the high degree of heterogeneity between patients at baseline is also reflected in their seeds. Additionally, the individualized seeds are significantly more predictive of future atrophy than a single seed placed at the hippocampus. Our findings illustrate that understanding where disease originates in individuals is critical to determining how it progresses and that our method allows us to infer early stages of disease from atrophy patterns observed at diagnosis.


Subject(s)
Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnosis , White Matter/pathology , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Atrophy/etiology , Cognitive Dysfunction/cerebrospinal fluid , Cohort Studies , Connectome , Correlation of Data , Disease Progression , Female , Functional Laterality , Humans , Magnetic Resonance Imaging , Male , Neurofibrillary Tangles/pathology , Psychiatric Status Rating Scales , Reference Values , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...