Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Case Rep ; 19(5): 1810-1814, 2024 May.
Article in English | MEDLINE | ID: mdl-38406318

ABSTRACT

Pancoast tumors, also known as superior sulcus tumors, encompass a diverse spectrum of neoplasms that infiltrate the apex of the chest wall, yielding distinctive clinical presentations. One of the earliest signs of tumor growth is pain radiating to the upper limb, stemming from peripheral nerve involvement, which can mimic joint pain or spinal radicular irritation. In this case report, we present the clinical history of a 64-year-old female smoker who had previously been recommended for orthopedic elbow surgery due to epicondylitis. Subsequent to the development of additional symptoms and rigorous investigation, a Pancoast tumor was diagnosed. Furthermore, we discuss the characteristic treatment modalities available for Pancoast tumors, including pharmacological pain management and interventional strategies such as spinal cordotomy and spinal alcoholysis. This case underscores the significance of recognizing atypical presentations and emphasizes the importance of comprehensive evaluation in the diagnosis and management of Pancoast tumors.

2.
Adv Respir Med ; 91(4): 278-287, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37489385

ABSTRACT

The aim of this publication is to analyze the topic of high-frequency jet ventilation (HFJV), namely catheter HFJV (C-HFJV), from a mathematical-physical as well as a clinical point of view. There are known issues with applying anesthesia and artificial lung ventilation (ALV) during surgical procedures in the upper airways, e.g., during bronchoscopy or tracheostomy. The principles, advantages, and disadvantages of HFJV are discussed in context with basic physical principles to clarify the proper use of this method. The basic technical principles of catheter construction, as well as its functional properties from a biophysical point of view, are introduced. Also, the placement of the catheter in the airways, the set-up of the HFJV ventilator, and the indications as well as the risks and contraindications of the use of C-HFJV are analyzed. This leads to the explanation of potentially optimal techniques for C-HFJV applications. In this article, we present the positive effects of C-HFJV even with complications such as bacterial or viral pneumonia, including COVID-19. In conclusion, we offer recommendations for clinical practice obtained from a literature review and from our rich clinical experience.


Subject(s)
COVID-19 , High-Frequency Jet Ventilation , Humans , Trachea , Bronchoscopy , Catheters
3.
Medicine (Baltimore) ; 102(8): e33052, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36827018

ABSTRACT

RATIONALE: World healthcare frequently faced severe viral pneumonia cases in the last decades, due to pandemic situations such as H1N1, MERS-CoV, and SARS-COVID-19. PATIENT CONCERNS: The impact of viral infection on lung structure, lung function, and overall mortality was significant. The quality of life and assumed life expectancy was decreased with the supposed development of lung fibrosis in involved survived patients. DIAGNOSES: We described the course and treatment of severe pneumonia H1N1 in a 30-year-old patient. INTERVENTIONS: Patient was included in a study regarding the therapeutic efficacy of selenium ClinicalTrials.gov ID: NCT02026856 with 10 years follow-up with concurrently documented X-ray lung examinations and final histology of lung tissue after sudden death. OUTCOMES: All sequential examinations and histological findings show a healing trend with the final full recovery of lung tissue.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Pneumonia, Viral , Humans , Adult , SARS-CoV-2 , Follow-Up Studies , Quality of Life , Pneumonia, Viral/drug therapy , Lung
4.
J Crit Care ; 73: 154174, 2023 02.
Article in English | MEDLINE | ID: mdl-36272279

ABSTRACT

PURPOSE: Potential negative implications associated with high respiratory rate (RR) are intrinsic positive end-expiratory pressure (PEEPi) generation, cardiovascular depression and possibly ventilator induced lung injury. Despite these negative consequences, optimal RR remains largely unknown. We hypothesized that without consideration of dynamics of lung emptying (i.e., the expiratory time constant [RCEXP]) clinician settings of RR may exceed the frequency needed for optimal lung emptying. MATERIALS AND METHODS: This prospective multicenter observational study measured RCEXP in 56 intensive care patients receiving pressure-controlled ventilation. We compared set RR to the one predicted with RCEXP (RRP). Also, the subgroup of patients with prolonged RCEXP was analyzed. RESULTS: Overall, the absolute mean difference between the set RR and RRP was 2.8 bpm (95% CI: 2.3-3.2). Twenty-nine (52%) patients had prolonged RCEXP (>0.8 s), mean difference between set RR and RRP of 3.1 bpm (95% CI: 2.3-3.8; p < 0.0001) and significantly higher PEEPi compared to those with RCEXP ≤ 0.8 s: 4.4 (95% CI: 3.6-5.2) versus 1.5 (95% CI: 0.9-2.0) cmH2O respectively, p < 0.0001. CONCLUSIONS: Use of RRP based on measured RCEXP revealed that the clinician-set RR exceeded that predicted by RCEXP in the majority of patients. Measuring RCEXP appears to be a useful variable for adjusting the RR during mandatory mechanical ventilation.


Subject(s)
Positive-Pressure Respiration , Respiratory Rate , Humans , Prospective Studies , Respiration, Artificial , Lung
5.
BMC Anesthesiol ; 22(1): 387, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513978

ABSTRACT

BACKGROUND: We hypothesized that the measured expiratory time constant (TauE) could be a bedside parameter for the evaluation of positive end-expiratory pressure (PEEP) settings in mechanically ventilated COVID-19 patients during pressure-controlled ventilation (PCV). METHODS: A prospective study was conducted including consecutively admitted adults (n = 16) with COVID-19-related ARDS requiring mechanical ventilation. A PEEP titration using PCV with a fixed driving pressure of 14 cmH2O was performed and TauE recorded at each PEEP level (0 to 18 cmH2O) in prone (n = 29) or supine (n = 24) positions. The PEEP setting with the highest TauE (TauEMAX) was considered to represent the best tradeoff between recruitment and overdistention. RESULTS: Two groups of patterns were observed in the TauE plots: recruitable (R) (75%) and nonrecruitable (NR) (25%). In the R group, the optimal PEEP and PEEP ranges were 8 ± 3 cmH2O and 6-10 cmH2O for the prone position and 9 ± 3 cmH2O and 7-12 cmH2O for the supine position. In the NR group, the optimal PEEP and PEEP ranges were 4 ± 4 cmH2O and 1-8 cmH2O for the prone position and 5 ± 3 cmH2O and 1-7 cmH2O for the supine position, respectively. The R group showed significantly higher optimal PEEP (p < 0.004) and PEEP ranges (p < 0.001) than the NR group. Forty-five percent of measurements resulted in the most optimal PEEP being significantly different between the positions (p < 0.01). Moderate positive correlation has been found between TauE vs CRS at all PEEP levels (r2 = 0.43, p < 0.001). CONCLUSIONS: TauE may be a novel method to assess PEEP levels. There was wide variation in patient responses to PEEP, which indicates the need for personalized evaluation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Humans , Positive-Pressure Respiration/methods , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Prospective Studies , Feasibility Studies , COVID-19/therapy
6.
J Int Med Res ; 50(5): 3000605221101970, 2022 May.
Article in English | MEDLINE | ID: mdl-35634917

ABSTRACT

OBJECTIVE: We evaluated pressure-controlled ventilation (PCV) with multiple programmed levels of positive end expiratory pressure (programmed multi-level ventilation; PMLV) in patients with coronavirus disease 2019 (COVID-19)-related acute respiratory distress syndrome (ARDS). METHODS: We conducted a multicenter, retrospective study from November 2020 to February 2021. PMLV was used with PCV in all patients with intensive care admission until improvement in oxygenation (fraction of inspired oxygen [FiO2] ≤0.50 and oxygen saturation [SpO2] >92%). The observed outcomes were improvement of hypoxemia, length of mechanical ventilation, partial pressure of carbon dioxide (PaCO2) stability, and adverse events. RESULTS: Of 188 mechanically ventilated patients with COVID-19-related ARDS, we analyzed 60 patients treated with PMLV. Hypoxemia improved in 55 (92%) patients, as measured by the change in partial pressure of oxygen/FiO2 and SpO2/FiO2 ratios on day 3 versus day 1, and in 32 (66%) ventilated patients on day 7 versus day 3. The median (interquartile range) length of mechanical ventilation for survivors and non-survivors was 8.4 (4.7-14.9) and 6.7 (3.6-10.3) days, respectively. CONCLUSIONS: PMLV appears to be a safe and effective ventilation strategy for improving hypoxemia in patients with COVID-19-related ARDS. Further studies are needed comparing the PMLV mode with the conventional ARDS ventilatory approach.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , COVID-19/therapy , Humans , Hypoxia/etiology , Hypoxia/therapy , Oxygen , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies
7.
Acute Crit Care ; 37(3): 470-473, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35081707

ABSTRACT

We report a patient with severe coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) treated with veno-venous extracorporeal membrane oxygenation (VV ECMO) and programmed multi-level ventilation (PMLV). VV ECMO as a treatment modality for severe ARDS has been described multiple times as a rescue therapy for refractory hypoxemia. It is well known that conventional ventilation can cause ventilator-induced lung injury. Protective ventilation during VV ECMO seems to be beneficial, translating to using low tidal volumes, prone positioning with general concept of open lung approach. However, mechanical ventilation is still required as ECMO per se is usually not sufficient to maintain adequate gas exchange due to hyperdynamic state of the patient and limitation of blood flow via VV ECMO. This report describes ventilation strategy using PMLV during "resting" period of the lung. In short, PMLV is a strategy for ventilating non-homogenous lungs that incorporates expiratory time constants and multiple levels of positive end-expiratory pressure. Using this approach, most affected acute lung injury/ARDS areas can be recruited, while preventing overdistension in healthy areas. To our knowledge, case report using such ventilation strategy for lung resting period has not been previously published.

8.
Med Devices (Auckl) ; 14: 277-285, 2021.
Article in English | MEDLINE | ID: mdl-34584466

ABSTRACT

Mechanical ventilation (MV) has been an integral method used in ICU care for decades. MV is typically viewed as a life-supporting intervention. However, it can also contribute to lung injury through stress and strain, as evidenced by ventilator-induced lung injury (VILI), even in previously healthy lungs. The negative impact may be worsened when significant lung non-homogeneity is present, eg. ALI and ARDS. Protective lung strategies to minimize VILI are to use low tidal volumes (Vt 4-6 mL/kg/PBW), plateau pressures (Pplat) <30 cmH2O and relatively high positive end-expiratory pressures (PEEP). Yet, use of constantly high PEEP levels is well recognized to result in hemodynamic compromise of the right ventricle, increased stress and strain through high mechanical energy impact on the lung and overdistension of relatively healthy lung tissue. Taking these issues into consideration, a different approach to mechanical ventilation was developed specifically for patients with non-homogeneity. This review focuses on a feature called programmed multi-level ventilation (PMLV). It is not a ventilation mode per se, but rather a form of extension that adjusts and modifies any ventilation mode (eg PCV,PSV, VCV, SIMV, etc.). PMLV is based on measured time constants (Tau) of the whole respiratory system, including artificial airways, breathing circuits, humidification devices and mechanical ventilator. Using a physiology-based approach presents a method to ventilate non-homogenous lungs through cyclic changes of different PEEP levels; recruitment takes place in lung areas with long time constants but protects relatively healthy lung areas from overdistension thus minimizing excessive mechanical power to the lung tissue.

9.
Kardiochir Torakochirurgia Pol ; 12(2): 126-33, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26336494

ABSTRACT

INTRODUCTION: Post-cardiac surgery delirium is a severe complication. The circadian rhythm of melatonin secretion has been shown to be altered postoperatively. AIM OF THE STUDY: It was hypothesized that restoring normal sleeping patterns with a substance that is capable of resynchronizing circadian rhythm such as exogenous administration of melatonin may possibly reduce the incidence of postoperative delirium. MATERIAL AND METHODS: This paper represents a prospective clinical observational study. Two consecutive groups of 250 consecutive patients took part in the study. Group A was the control group and group B was the melatonin group. In group B, the patients received prophylactic melatonin treatment. The main objectives were to observe the incidence of delirium, to identify any predictors of delirium, and to compare the two groups based on the delirium incidence. RESULTS: The incidence of delirium was 8.4% in the melatonin group vs. 20.8% in the control group (p = 0.001). Predictors of delirium in the melatonin group were age (p = 0.001) and higher EuroSCORE II value (p = 0.001). In multivariate analysis, age and EuroSCORE II value (p = 0.014) were predictors of postoperative delirium. Comparing the groups, the main predictors of delirium were age (p = 0.001), EuroSCORE II value (p = 0.001), cardio-pulmonary bypass (CPB) time (p = 0.001), aortic cross-clamping (ACC) time (p = 0.008), sufentanil dose (p = 0.001) and mechanical ventilation (p = 0.033). CONCLUSIONS: Administration of melatonin significantly decreases the incidence of postoperative delirium after cardiac surgery. Prophylactic treatment with melatonin should be considered in every patient scheduled for cardiac surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...