Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 121(12): 6424-6435, 2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28413568

ABSTRACT

Small push-pull molecules attract much attention as prospective donor materials for organic solar cells (OSCs). By chemical engineering, it is possible to combine a number of attractive properties such as broad absorption, efficient charge separation, and vacuum and solution processabilities in a single molecule. Here we report the synthesis and early time photophysics of such a molecule, TPA-2T-DCV-Me, based on the triphenylamine (TPA) donor core and dicyanovinyl (DCV) acceptor end group connected by a thiophene bridge. Using time-resolved photoinduced absorption and photoluminescence, we demonstrate that in blends with [70]PCBM the molecule works both as an electron donor and hole acceptor, thereby allowing for two independent channels of charge generation. The charge-generation process is followed by the recombination of interfacial charge transfer states that takes place on the subnanosecond time scale as revealed by time-resolved photoluminescence and nongeminate recombination as follows from the OSC performance. Our findings demonstrate the potential of TPA-DCV-based molecules as donor materials for both solution-processed and vacuum-deposited OSCs.

SELECTION OF CITATIONS
SEARCH DETAIL