Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37623613

ABSTRACT

Aspergillus mold is a ubiquitously found, airborne pathogen that can cause a variety of diseases from mild to life-threatening in severity. Limitations in diagnostic methods combined with anti-fungal resistance render Aspergillus a global emerging pathogen. In industry, Aspergilli produce toxins, such as aflatoxins, which can cause food spoilage and pose public health risk issues. Here, we report a multiplex qPCR method for the detection and identification of the five most common pathogenic Aspergillus species, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus nidulans. Our approach exploits species-specific nucleotide polymorphisms within their ITS genomic regions. This novel assay combines multiplex single-color real time qPCR and melting curve analysis and provides a straight-forward, rapid, and cost-effective detection method that can identify five Aspergillus species simultaneously in a single reaction using only six unlabeled primers. Due to their unique fragment lengths, the resulting amplicons are directly linked to certain Aspergillus species like fingerprints, following either electrophoresis or melting curve analysis. Our method is characterized by high analytical sensitivity and specificity, so it may serve as a useful and inexpensive tool for Aspergillus diagnostic applications both in health care and the food industry.

2.
Genes (Basel) ; 14(5)2023 04 23.
Article in English | MEDLINE | ID: mdl-37239320

ABSTRACT

The authentication of food products and the verification of their identity are of major importance for consumers. Food fraud through mislabeling is an illegal practice consisting of the substitution of an expensive food product by a relatively cheaper one, misleading false labelling of their origin and adulteration in processed or frozen products. This issue is particularly of high importance concerning fish and seafood, which are easily adulterated primarily due to difficult morphological identification. Fish species of the Mullidae family are considered among the most high-valued seafood products traded in Greece and Eastern Mediterranean in general, in terms of the price and demand. Specifically, the red mullet (Mullus barbatus) and the striped red mullet (Mullus surmuletus) are both indigenous in the Aegean (FAO Division 37.3.1) and the Ionian (FAO Division 37.2.2) Seas, with high levels of consumers' preferences. However, they could be easily adulterated or misidentified by the invasive Aegean Sea Lessepsian migrator goldband goatfish (Upeneus moluccensis) as well as by the imported West African goatfish (Pseudupeneus prayensis). Keeping this in mind, we designed two novel, time-saving and easy-to-apply multiplex PCR assays and one multiple Melt-Curve analysis real-time PCR for the identification of these four species. These methodologies are based on species-specific primers targeting single nucleotide polymorphisms (SNPs) detected via sequencing analysis of the mitochondrial cytochrome C oxidase subunit I (CO1) and of the cytochrome b (CYTB) genes in newly collected individuals, with additional comparison with congeneric and conspecific haplotypes obtained from the GenBank database. Both methodologies, targeting CO1 or CYTB, utilize one common and four diagnostic primers, producing amplicons of different length that are easily and reliably separated on agarose gel electrophoresis, yielding a single clear band of diagnostic size for each species or a certain Melt-Curve profile. The applicability of this cost-effective and fast methodology was tested in 328 collected specimens, including 10 cooked samples obtained from restaurants. In the vast majority (327 out of the 328) of the specimens tested, one single band was produced, in agreement with the expected products with a single exception a M. barbatus sample that was identified as M. surmuletus, the identity of which was confirmed using sequencing, indicating erroneous morphological identification. The developed methodologies are expected to contribute to the detection of commercial fraud in fish authentication.


Subject(s)
Perciformes , Smegmamorpha , Animals , Multiplex Polymerase Chain Reaction , Fishes/genetics , Seafood
SELECTION OF CITATIONS
SEARCH DETAIL
...