Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Tissue Eng ; 15: 20417314241230633, 2024.
Article in English | MEDLINE | ID: mdl-38361535

ABSTRACT

The tailorable properties of synthetic polyethylene glycol (PEG) hydrogels make them an attractive substrate for human organoid assembly. Here, we formed human neural organoids from iPSC-derived progenitor cells in two distinct formats: (i) cells seeded on a Matrigel surface; and (ii) cells seeded on a synthetic PEG hydrogel surface. Tissue assembly on synthetic PEG hydrogels resulted in three dimensional (3D) planar neural organoids with greater neuronal diversity, greater expression of neurovascular and neuroinflammatory genes, and reduced variability when compared with tissues assembled upon Matrigel. Further, our 3D human tissue assembly approach occurred in an open cell culture format and created a tissue that was sufficiently translucent to allow for continuous imaging. Planar neural organoids formed on PEG hydrogels also showed higher expression of neural, vascular, and neuroinflammatory genes when compared to traditional brain organoids grown in Matrigel suspensions. Further, planar neural organoids contained functional microglia that responded to pro-inflammatory stimuli, and were responsive to anti-inflammatory drugs. These results demonstrate that the PEG hydrogel neural organoids can be used as a physiologically relevant in vitro model of neuro-inflammation.

2.
STAR Protoc ; 4(4): 102562, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37690025

ABSTRACT

Traditionally, midbody remnants (MBRs) are isolated from cell culture medium using ultracentrifugation, which is expensive and time consuming. Here, we present a protocol for isolating MBRs or large extracellular vesicles (EVs) from mammalian cell culture using either 1.5% polyethylene glycol 6000 (PEG6000) or PEG5000-coated gold nanoparticles. We describe steps for growing cells, collecting media, and precipitating MBRs and EVs from cell culture medium. We then detail characterization of MBRs through immunofluorescent antibody staining and immunofluorescent imaging.


Subject(s)
Extracellular Vesicles , Metal Nanoparticles , Animals , Gold , Cell Culture Techniques , Ultracentrifugation , Mammals
3.
Respir Res ; 18(1): 188, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29126429

ABSTRACT

BACKGROUND: The association of eosinophils with inflammation and tissue remodeling is at least partially due to their release of toxic granule proteins and other mediators, including cytokines. Tissue remodeling and consequent functional defects are affected by activity of connective tissue fibroblasts. Exaggerated fibroblast activation, accumulation and change of phenotype may lead to fibrosis and loss of tissue function. So far, little information has been reported on how eosinophils affect inflammation and tissue remodeling via the activation of fibroblasts. We have recently shown that eosinophil activation with IL-3 led to a robust eosinophil degranulation on immunoglobin-G (IgG) coated plates. Thus, in the present study, we analyze the effects of IL-3-activated eosinophil degranulation products on primary human lung fibroblasts (HLF) using whole transcriptome sequencing. METHODS: Conditioned media was obtained from eosinophils that were pre-activated with IL-3 or IL-5 and subsequently cultured for 6 h on IgG to induce degranulation. This conditioned media was added on human lung fibroblasts (HLF) for 24 h and the cell lysates were then subjected to whole transcriptome sequencing to identify global changes in gene expression. Differentially expressed genes were analyzed using the Ingenuity Pathway Analysis (IPA), and validated by qPCR. RESULTS: In HLF, the expression level of 300 genes was changed by conditioned media from IL-3-activated eosinophils compared to control fibroblast cultures. Among these 300 genes, the expression level of 35 genes coding for known proteins was upregulated by IL-3- versus IL-5-pre-activated eosinophils. Of the 35 upregulated genes, IPA identified C3, CH25H, CXCL1, CXCL8, CYP1A1, ICAM1, IL6 and UCN2 as having downstream functions on inflammation, tissue remodeling and lipid synthesis. This analysis combined with previous RNA sequencing analyses of eosinophils suggest IL-1ß, OSM and TNFSF12 as potential upstream regulators of fibroblasts. CONCLUSIONS: This study has identified several novel pro-inflammatory and pro-remodeling mediators produced by fibroblasts in response to activated eosinophils. These findings may have significant implications on the role of eosinophil/fibroblast interactions in eosinophilic disorders.


Subject(s)
Eosinophils/metabolism , Fibroblasts/metabolism , Inflammation Mediators/metabolism , Lipid Metabolism/physiology , Lung/metabolism , Sequence Analysis, RNA/methods , Cells, Cultured , Culture Media, Conditioned/pharmacology , Eosinophils/drug effects , Eosinophils/immunology , Female , Fibroblasts/drug effects , Fibroblasts/immunology , Forecasting , Gene Regulatory Networks/physiology , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/immunology , Lung/immunology
4.
PLoS One ; 12(1): e0170207, 2017.
Article in English | MEDLINE | ID: mdl-28095470

ABSTRACT

Semaphorin-7A is a glycosylphosphatidylinositol-anchored protein, initially characterized as an axon guidance protein. Semaphorin-7A also contributes to immune cell regulation and may be an essential pro-fibrotic factor when expressed by non-fibroblast cell types (exogenous). In mouse models, semaphorin-7A was shown to be important for TGF-ß1-induced pulmonary fibrosis characterized by myofibroblast accumulation and extracellular matrix deposition, but the cell-specific role of semaphorin-7A was not examined in fibroblasts. The purpose of this study is to determine semaphorin-7A expression by fibroblasts and to investigate the function of endogenously expressed semaphorin-7A in primary human lung fibroblasts (HLF). Herein, we show that non-fibrotic HLF expressed high levels of cell surface semaphorin-7A with little dependence on the percentage of serum or recombinant TGF-ß1. Semaphorin-7A siRNA strongly decreased semaphorin-7A mRNA expression and reduced cell surface semaphorin-7A. Reduction of semaphorin-7A induced increased proliferation and migration of non-fibrotic HLF. Also, independent of the presence of TGF-ß1, the decline of semaphorin-7A by siRNA was associated with increased α-smooth muscle actin production and gene expression of periostin, fibronectin, laminin, and serum response factor (SRF), indicating differentiation into a myofibroblast. Conversely, overexpression of semaphorin-7A in the NIH3T3 fibroblast cell line reduced the production of pro-fibrotic markers. The inverse association between semaphorin-7A and pro-fibrotic fibroblast markers was further analyzed using HLF from idiopathic pulmonary fibrosis (IPF) (n = 6) and non-fibrotic (n = 7) lungs. Using these 13 fibroblast lines, we observed that semaphorin-7A and periostin expression were inversely correlated. In conclusion, our study indicates that endogenous semaphorin-7A in HLF plays a role in maintaining fibroblast homeostasis by preventing up-regulation of pro-fibrotic genes. Therefore, endogenous and exogenous semaphorin-7A may have opposite effects on the fibroblast phenotype.


Subject(s)
Cell Differentiation , Fibroblasts/cytology , Idiopathic Pulmonary Fibrosis/pathology , Lung/cytology , Pulmonary Fibrosis/pathology , Semaphorins/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Cells, Cultured , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Mice , NIH 3T3 Cells , Pulmonary Fibrosis/metabolism , Semaphorins/genetics , Transforming Growth Factor beta1/genetics
5.
J Cell Biochem ; 118(8): 2241-2249, 2017 08.
Article in English | MEDLINE | ID: mdl-28078713

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive and deadly disorder with very few therapeutic options. Palomid 529 (8-(1-hydroxyethyl)-2-methoxy-3-(4-methoxybenzyloxy)-benzo[c]chromen-6-one; P529) is a novel dual inhibitor of mechanistic target of rapamycin complex 1/2 (mTORC1/2). In these studies, we investigated the effect of P529 on TGF-ß-dependent signaling and myofibroblast differentiation. TGF-ß-induced phosphorylation of the mTORC1 targets, p70 S6 kinase 1 (S6K1), and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), were both dose dependently inhibited by P529 in human lung fibroblasts with maximal inhibition occurring between 10 and 20 µM. mTORC2-mediated phosphorylation of Akt at the S473 site was partially inhibited with a similar dose dependency, as was TGF-ß-induced myofibroblast differentiation. Protein levels of TGF-ß-induced fibronectin and collagen were similarly decreased by P529. At this dose, there was also inhibition of mRNA transcript levels for Col1 and α-SMA, suggesting inhibition of transcriptional activation. However, there was no effect of P529 on canonical TGF-ß-induced Smad signaling, as assessed by receptor-associated Smad2/3 phosphorylation, Smad2/3/4 translocation, or Smad-driven gene expression, as assessed by Smad-binding element driven luciferase. Conversely, activation of mTORC1/2 signaling was dependent on TGF-ß type I receptor (ALK5) signaling and on Smad2/3 expression. P529 treatment disrupted TGF-ß-induced actin stress fiber formation during myofibroblast differentiation, the deposition of new extracellular fibronectin matrix, and linear wound closure by fibroblasts. Likewise, mTOR knockdown inhibited TGF-ß-induced myofibroblast differentiation. In conclusion, P529 inhibits TGF-ß-induced myofibroblast differentiation, actin stress fiber formation, and matrix protein expression and deposition. Inhibition of mTORC1/2 by P529 may be a promising approach to inhibit in vivo fibrosis. J. Cell. Biochem. 118: 2241-2249, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Benzopyrans/pharmacology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/metabolism , Myofibroblasts/drug effects , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Blotting, Western , Cell Cycle Proteins , Cell Differentiation/drug effects , Cells, Cultured , Collagen/metabolism , Fibronectins/metabolism , Humans , Myofibroblasts/cytology , Phosphoproteins/metabolism , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Transforming Growth Factor beta/pharmacology
6.
Am J Respir Cell Mol Biol ; 56(4): 465-476, 2017 04.
Article in English | MEDLINE | ID: mdl-28005397

ABSTRACT

Myofibroblasts, the primary effector cells that mediate matrix remodeling during pulmonary fibrosis, rapidly assemble an extracellular fibronectin matrix. Tensin (TNS) 1 is a key component of specialized cellular adhesions (fibrillar adhesions) that bind to extracellular fibronectin fibrils. We hypothesized that TNS1 may play a role in modulating myofibroblast-mediated matrix formation. We found that TNS1 expression is increased in fibroblastic foci from lungs with idiopathic pulmonary fibrosis. Transforming growth factor (TGF)-ß profoundly up-regulates TNS1 expression with kinetics that parallel the expression of the myofibroblast marker, smooth muscle α-actin. TGF-ß-induced TNS1 expression is dependent on signaling through the TGF-ß receptor 1 and is Rho coiled-coiled kinase/actin/megakaryoblastic leukemia-1/serum response factor dependent. Small interfering RNA-mediated knockdown of TNS1 disrupted TGF-ß-induced myofibroblast differentiation, without affecting TGF-ß/Smad signaling. In contrast, loss of TNS1 resulted in disruption of focal adhesion kinase phosphorylation, focal adhesion formation, and actin stress fiber development. Finally, TNS1 was essential for the formation of fibrillar adhesions and the assembly of nascent fibronectin and collagen matrix in myofibroblasts. In summary, our data show that TNS1 is a novel megakaryoblastic leukemia-1-dependent gene that is induced during pulmonary fibrosis. TNS1 plays an essential role in TGF-ß-induced myofibroblast differentiation and myofibroblast-mediated formation of extracellular fibronectin and collagen matrix. Targeted disruption of TNS1 and associated signaling may provide an avenue to inhibit tissue fibrosis.


Subject(s)
Cell Differentiation , Extracellular Matrix/metabolism , Myofibroblasts/cytology , Myofibroblasts/metabolism , Tensins/metabolism , Actins/metabolism , Cell Differentiation/drug effects , Extracellular Matrix/drug effects , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Humans , MAP Kinase Kinase Kinases/metabolism , Myofibroblasts/drug effects , Polymerization/drug effects , Protein Serine-Threonine Kinases/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta/pharmacology , Up-Regulation/drug effects , rho-Associated Kinases/metabolism
7.
Respir Res ; 16: 45, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25885656

ABSTRACT

BACKGROUND: Fibrosing disorders of the lung, such as idiopathic pulmonary fibrosis, are characterized by progressive extracellular matrix accumulation that is driven by myofibroblasts. The transcription factor megakaryoblastic leukemia-1 (MKL1) mediates myofibroblast differentiation in response to several profibrotic stimuli, but the role it plays in mediating pulmonary fibrosis has not been fully elucidated. In this study, we utilized mice that had a germline deletion of MKL1 (MKL1 (-,-)) to determine the role that MKL1 plays in the development of bleomycin-induced pulmonary fibrosis. METHODS: Bleomycin or normal saline were intratracheally delivered to 9 to 12 week old female MKL1 (+,+) and MKL1 (-,-) mice. Mice were assessed for weight loss and survival to 28 days. Inflammatory responses were assessed through bronchoalveolar lavage at days 3 and 7 post-treatment. The development of pulmonary fibrosis was characterized using hydroxyproline assay and histological staining. MKL1 (+,+) and MKL1 (-,-) mouse lung fibroblasts were isolated to compare morphologic, gene expression and functional differences. RESULTS: MKL1 (-,-) mice demonstrated increased survival, attenuated weight loss, and decreased collagen accumulation compared to wild-type animals 28-days after intratracheal instillation of bleomycin. Histological analysis demonstrated decreased trichrome, smooth muscle α-actin, and fibronectin staining in MKL1(-,-) mice compared to MKL1 (+,+) controls. Differential cell counts from bronchoalveolar lavage demonstrated that there was attenuated neutrophilia 3 days after bleomycin administration, but no difference at day 7. Isolated mouse lung fibroblasts from MKL1 (-,-) mice had decreased contractility and deposited less fibronectin matrix compared to wild-type controls, suggesting a defect in key remodeling functions. CONCLUSIONS: Altogether, these data demonstrate that MKL1 plays a significant role in mediating the fibrotic response to bleomycin injury. Loss of MKL1 attenuated early neutrophil influx, as well as myofibroblast-mediated remodeling. Targeting MKL1 activity may therefore be a useful strategy in treating pulmonary fibrosis.


Subject(s)
Bleomycin , Fibroblasts/metabolism , Lung/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Trans-Activators/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cell Shape , Cells, Cultured , Collagen/metabolism , Female , Fibroblasts/pathology , Fibronectins/metabolism , Genotype , Germ-Line Mutation , Inflammation Mediators/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Phenotype , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , Signal Transduction , Time Factors , Trans-Activators/deficiency , Trans-Activators/genetics
8.
J Biol Chem ; 290(11): 6951-61, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25627685

ABSTRACT

Myofibroblasts have increased expression of contractile proteins and display augmented contractility. It is not known if the augmented contractile gene expression characterizing the myofibroblast phenotype impacts its intrinsic ability to assemble fibronectin (FN) and extracellular matrix. In this study we investigated whether myofibroblasts displayed increased rates of FN fibril assembly when compared with their undifferentiated counterparts. Freshly plated myofibroblasts assemble exogenous FN (488-FN) into a fibrillar matrix more rapidly than fibroblasts that have not undergone myofibroblast differentiation. The augmented rate of FN matrix formation by myofibroblasts was dependent on intact Rho/Rho kinase (ROCK) and myosin signals inasmuch as treatment with Y27632 or blebbistatin attenuated 488-FN assembly. Inhibiting contractile gene expression by pharmacologic disruption of the transcription factors megakaryoblastic leukemia-1 (MKL1)/serum response factor (SRF) during myofibroblast differentiation resulted in decreased contractile force generation and attenuated 488-FN incorporation although not FN expression. Furthermore, disruption of the MKL1/SRF target gene, smooth muscle α-actin (α-SMA) via siRNA knockdown resulted in attenuation of 488-FN assembly. In conclusion, this study demonstrates a linkage between increased contractile gene expression, most importantly α-SMA, and the intrinsic capacity of myofibroblasts to assemble exogenous FN into fibrillar extracellular matrix.


Subject(s)
Fibronectins/metabolism , Myofibroblasts/metabolism , Actins/metabolism , Cell Differentiation , Cells, Cultured , Extracellular Matrix/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Myofibroblasts/cytology , Pulmonary Fibrosis/metabolism , Serum Response Factor/metabolism , Trans-Activators/metabolism , Transforming Growth Factor beta/metabolism
9.
Mol Cell Proteomics ; 13(6): 1543-51, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24692642

ABSTRACT

Discovering the function of an unknown protein, particularly one with neither structural nor functional correlates, is a daunting task. Interaction analyses determine binding partners, whereas DNA transfection, either transient or stable, leads to intracellular expression, though not necessarily at physiologically relevant levels. In theory, direct intracellular protein delivery (protein transduction) provides a conceptually simpler alternative, but in practice the approach is problematic. Domains such as HIV TAT protein are valuable, but their effectiveness is protein specific. Similarly, the delivery of intact proteins via endocytic pathways (e.g. using liposomes) is problematic for functional analysis because of the potential for protein degradation in the endosomes/lysosomes. Consequently, recent reports that microspheres can deliver bio-cargoes into cells via a non-endocytic, energy-independent pathway offer an exciting and promising alternative for in vitro delivery of functional protein. In order for such promise to be fully exploited, microspheres are required that (i) are stably linked to proteins, (ii) can deliver those proteins with good efficiency, (iii) release functional protein once inside the cells, and (iv) permit concomitant tracking. Herein, we report the application of microspheres to successfully address all of these criteria simultaneously, for the first time. After cellular uptake, protein release was autocatalyzed by the reducing cytoplasmic environment. Outside of cells, the covalent microsphere-protein linkage was stable for ≥90 h at 37 °C. Using conservative methods of estimation, 74.3% ± 5.6% of cells were shown to take up these microspheres after 24 h of incubation, with the whole process of delivery and intracellular protein release occurring within 36 h. Intended for in vitro functional protein research, this approach will enable study of the consequences of protein delivery at physiologically relevant levels, without recourse to nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake.


Subject(s)
Microspheres , Polymers/chemistry , Proteins/metabolism , DNA/chemistry , DNA/metabolism , Endosomes/metabolism , Humans , Protein Binding , Proteins/chemistry
10.
J Allergy (Cairo) ; 2012: 943982, 2012.
Article in English | MEDLINE | ID: mdl-22287976

ABSTRACT

The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (ß-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, ß-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse ß-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions.

11.
Hepatology ; 49(1): 124-32, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18980227

ABSTRACT

UNLABELLED: This is a phase II clinical trial investigating the safety and efficacy of intravenous vaccination with mature autologous dendritic cells (DCs) pulsed ex vivo with a liver tumor cell line lysate (HepG2) in patients with advanced hepatocellular carcinoma (HCC). HCC is an attractive target for immunotherapy as evidenced by an active recruitment of tumor-infiltrating lymphocytes that are capable of lysing autologous tumor cells in ex vivo studies. DCs are the most potent antigen-presenting cells, with the capacity to take up, process, and present tumor antigens to T cells and stimulate an immune response, thus providing a rational platform for vaccine development. Thirty-five patients with advanced HCC and not suitable for radical or loco-regional therapies received a maximum of six DC vaccinations each at 3-week intervals. In total, 134 DC infusions were administered with no significant toxicity and no evidence of autoimmunity. Twenty-five patients who received at least three vaccine infusions were assessed clinically for response. The radiologically determined disease control rate (combined partial response and stable disease >or=3 months) was 28%. In 17 patients the baseline serum alpha-fetoprotein (AFP) was >or= 1,000 ng/mL; in four of these patients, it fell to <30% of baseline following vaccination. In one patient there was a radiological partial response associated with a fall in AFP to <10% of baseline. Immune responses were assessed using an ELIspot assay of interferon-gamma (IFN-gamma) release. In several cases there was induction of T cell responses to the vaccine and/or AFP following vaccination. CONCLUSION: Autologous DC vaccination in patients with HCC is safe and well tolerated with evidence of antitumor efficacy assessed radiologically and serologically, with generation of antigen-specific immune responses in some cases.


Subject(s)
Carcinoma, Hepatocellular/therapy , Dendritic Cells/immunology , Liver Neoplasms/therapy , Adolescent , Adult , Aged , Cancer Vaccines/therapeutic use , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Female , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Male , Middle Aged , Survival Analysis , Vaccination , alpha-Fetoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...