Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 120(3): 472-473, 2023 09.
Article in English | MEDLINE | ID: mdl-37545113
2.
Biomater Sci ; 11(14): 5012-5024, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37334774

ABSTRACT

Peptide amphiphiles (PAs) have emerged as effective molecular building blocks for creating self-assembling nanobiomaterials for multiple biomedical applications. Herein, we report a straightforward approach to assemble soft bioinstructive platforms to recreate the native neural extracellular matrix (ECM) aiming for neuronal regeneration based on the electrostatic-driven supramolecular presentation of laminin-derived IKVAV-containing self-assembling PA (IKVAV-PA) on biocompatible multilayered nanoassemblies. Spectroscopic and microscopic techniques show that the co-assembly of positively charged low-molecular-weight IKVAV-PA with oppositely charged high-molecular-weight hyaluronic acid (HA) triggers the formation of ordered ß-sheet structures denoting a one-dimensional nanofibrous network. The successful functionalization of poly(L-lysine)/HA layer-by-layer nanofilms with an outer positively charged layer of self-assembling IKVAV-PA is demonstrated by the quartz crystal microbalance with dissipation monitoring and the nanofibrous morphological properties revealed by atomic force microscopy. The bioactive ECM-mimetic supramolecular nanofilms promote the enhancement of primary neuronal cells' adhesion, viability, and morphology when compared to the PA without the IKVAV sequence and PA-free biopolymeric multilayered nanofilms, and stimulate neurite outgrowth. The nanofilms hold great promise as bioinstructive platforms for enabling the assembly of customized and robust multicomponent supramolecular biomaterials for neural tissue regeneration.


Subject(s)
Extracellular Matrix , Peptides , Peptides/pharmacology , Peptides/chemistry , Extracellular Matrix/chemistry , Neurons , Biocompatible Materials/pharmacology , Biocompatible Materials/analysis , Neuronal Outgrowth
3.
Pharmaceutics ; 12(2)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102252

ABSTRACT

Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.

4.
Methods Mol Biol ; 2036: 205-219, 2019.
Article in English | MEDLINE | ID: mdl-31410799

ABSTRACT

Biomaterials-based hydrogels are attractive drug-eluting vehicles in the context of RNA therapeutics, such as those utilizing antisense oligonucleotide or RNA interference based drugs, as they can potentially reduce systemic toxicity and enhance in vivo efficacy by increasing in situ concentrations. Here we describe the preparation of antisense oligonucleotide-loaded fibrin hydrogels exploring their applications in the context of the nervous system utilizing an organotypic dorsal root ganglion explant in vitro system and an in vivo model of spinal cord injury.


Subject(s)
Drug Carriers , Hydrogels/chemistry , Oligonucleotides, Antisense/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Fibrin/chemistry , Ganglia, Spinal/metabolism , Gene Silencing , Humans , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/genetics , Spinal Cord
5.
J Control Release ; 291: 65-79, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30308255

ABSTRACT

Drug delivery to the central nervous system is restricted by the blood-brain barrier (BBB). However, with the onset of stroke, the BBB becomes leaky, providing a window of opportunity to passively target the brain. Here, cationic poly(amido amine) (PAMAM) dendrimers of different generations were functionalized with poly(ethylene glycol) (PEG) to reduce cytotoxicity and prolong blood circulation half-life, aiming for a safe in vivo drug delivery system in a stroke scenario. Rhodamine B isothiocyanate (RITC) was covalently tethered to the dendrimer backbone and used as a small surrogate drug as well as for tracking purposes. The biocompatibility of PAMAM was markedly increased by PEGylation as a function of dendrimer generation and degree of functionalization. The PEGylated RITC-modified dendrimers did not affect the integrity of an in vitro BBB model. Additionally, the functionalized dendrimers remained safe when in contact with the bEnd.3 cells and rat primary astrocytes composing the in vitro BBB model after hypoxia induced by oxygen-glucose deprivation. Modification with PEG also decreased the interaction and uptake by endothelial cells of PAMAM, indicating that the transport across a leaky BBB due to focal brain ischemia would be facilitated. Next, the functionalized dendrimers were tested in contact with red blood cells showing no haemolysis for the PEGylated PAMAM, in contrast to the unmodified dendrimer. Interestingly, the PEG-modified dendrimers reduced blood clotting, which may be an added beneficial function in the context of stroke. The optimized PAMAM formulation was intravenously administered in mice after inducing permanent focal brain ischemia. Twenty-four hours after administration, dendrimers could be detected in the brain, including in neurons of the ischemic cortex. Our results suggest that the proposed formulation has the potential for becoming a successful delivery vector for therapeutic application to the injured brain after stroke reaching the ischemic neurons.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Ischemia/drug therapy , Dendrimers/pharmacokinetics , Drug Carriers/pharmacokinetics , Drug Delivery Systems , Polyethylene Glycols/pharmacokinetics , Animals , Astrocytes/metabolism , Biological Transport , Brain Ischemia/metabolism , Cell Line , Cells, Cultured , Dendrimers/analysis , Dendrimers/metabolism , Drug Carriers/analysis , Drug Carriers/metabolism , Drug Delivery Systems/methods , Humans , Male , Mice, Inbred C57BL , Polyethylene Glycols/analysis , Polyethylene Glycols/metabolism , Rats, Wistar
6.
Mol Ther Nucleic Acids ; 11: 393-406, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29858074

ABSTRACT

After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels, allowing the regulation of cell survival and cell function, together with the availability of chemically modified nucleic acids with favorable biopharmaceutical properties, make AONs an attractive tool for novel SCI therapy developments. In this work, we explored the potential of locked nucleic acid (LNA)-modified AON gapmers in combination with a fibrin hydrogel bridging material to induce gene silencing in situ at a SCI lesion site. LNA gapmers were effectively developed against two promising gene targets aiming at enhancing axonal regeneration-RhoA and GSK3ß. The fibrin-matrix-assisted AON delivery system mediated potent RNA knockdown in vitro in a dorsal root ganglion explant culture system and in vivo at a SCI lesion site, achieving around 75% downregulation 5 days after hydrogel injection. Our results show that local implantation of a AON-gapmer-loaded hydrogel matrix mediated efficient gene silencing in the lesioned spinal cord and is an innovative platform that can potentially combine gene regulation with regenerative permissive substrates aiming at SCI therapeutics and nerve regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...