Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 5(1): 39-49, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20013946

ABSTRACT

RNA interference (RNAi) has emerged as a powerful technique for studying loss-of-function phenotypes by specific down-regulation of gene expression, allowing the investigation of virus-host interactions by large-scale high-throughput RNAi screens. Here we present a robust and sensitive small interfering RNA screening platform consisting of an experimental setup, single-cell image and statistical analysis as well as bioinformatics. The workflow has been established to elucidate host gene functions exploited by viruses, monitoring both suppression and enhancement of viral replication simultaneously by fluorescence microscopy. The platform comprises a two-stage procedure in which potential host factors are first identified in a primary screen and afterwards re-tested in a validation screen to confirm true positive hits. Subsequent bioinformatics allows the identification of cellular genes participating in metabolic pathways and cellular networks utilised by viruses for efficient infection. Our workflow has been used to investigate host factor usage by the human immunodeficiency virus-1 (HIV-1), but can also be adapted to other viruses. Importantly, we expect that the description of the platform will guide further screening approaches for virus-host interactions. The ViroQuant-CellNetworks RNAi Screening core facility is an integral part of the recently founded BioQuant centre for systems biology at the University of Heidelberg and will provide service to external users in the near future.


Subject(s)
Computational Biology/methods , HIV-1/genetics , RNA Interference , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , Virus Replication/genetics , HeLa Cells , Humans
2.
Curr Protoc Protein Sci ; Chapter 18: 18.2.1-18.2.13, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19688736

ABSTRACT

Microchips are used in the combinatorial synthesis of peptide arrays by means of amino acid microparticle deposition. The surface of custom-built microchips can be equipped with an amino-modified poly(ethylene glycol)methacrylate (PEGMA) graft polymer coating, which permits high loading of functional groups and resists nonspecific protein adsorption. Specific microparticles that are addressed to the polymer-coated microchip surface in a well defined pattern release preactivated amino acids upon melting, and thus allow combinatorial synthesis of high-complexity peptide arrays directly on the chip surface. Currently, arrays with densities of up to 40,000 peptide spots/cm(2) can be generated in this way, with a minimum of coupling cycles required for full combinatorial synthesis. Without using any additional blocking agent, specific peptide recognition has been verified by background-free immunostaining on the chip-based array. This unit describes microchip surface modification, combinatorial peptide array synthesis on the chip, and a typical immunoassay employing the resulting high-density peptide arrays.


Subject(s)
Combinatorial Chemistry Techniques , Peptides/chemical synthesis , Protein Array Analysis/instrumentation , Adsorption , Amino Acids/chemistry , Coated Materials, Biocompatible/chemistry , Methacrylates/chemistry , Particle Size , Peptides/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Protein Array Analysis/methods , Proteins/chemistry , Surface Properties
4.
Science ; 318(5858): 1888, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18096799

ABSTRACT

Arrays promise to advance biology through parallel screening for binding partners. We show the combinatorial in situ synthesis of 40,000 peptide spots per square centimeter on a microchip. Our variant Merrifield synthesis immobilizes activated amino acids as monomers within particles, which are successively attracted by electric fields generated on each pixel electrode of the chip. With all different amino acids addressed, particles are melted at once to initiate coupling. Repetitive coupling cycles should allow for the translation of whole proteomes into arrays of overlapping peptides that could be used for proteome research and antibody profiling.


Subject(s)
Combinatorial Chemistry Techniques , Peptides/chemical synthesis , Amino Acids/chemistry , Electricity , Protein Array Analysis/methods
5.
J Proteome Res ; 6(8): 3197-202, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17628092

ABSTRACT

Complementary metal oxide semiconductor (CMOS) microelectronic chips fulfill important functions in the field of biomedical research, ranging from the generation of high complexity DNA and protein arrays to the detection of specific interactions thereupon. Nevertheless, the issue of merging pure CMOS technology with a chemically stable surface modification which further resists interfering nonspecific protein adsorption has not been addressed yet. We present a novel surface coating for CMOS microchips based on poly(ethylene glycol)methacrylate graft polymer films, which in addition provides high loadings of functional groups for the linkage of probe molecules. The coated microchips were compatible with the harshest conditions emerging in microarray generating methods, thoroughly retaining structural integrity and microelectronic functionality. Nonspecific adsorption of proteins on the chip's surface was completely obviated even with complex serum protein mixtures. We could demonstrate the background-free antibody staining of immobilized probe molecules without using any blocking agents, encouraging further integration of CMOS technology in proteome research.


Subject(s)
Polymers/chemistry , Protein Array Analysis/methods , Semiconductors , Adsorption , Protein Array Analysis/instrumentation , Proteins/analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...