Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AIChE J ; 64(5): 1859-1873, 2018 May.
Article in English | MEDLINE | ID: mdl-29937545

ABSTRACT

The hydrodynamics of secondary flow phenomena in a disc-shaped gas vortex unit (GVU) is investigated using experimentally validated numerical simulations. The simulation using ANSYS FLUENT® v.14a reveals the development of a backflow region along the core of the central gas exhaust, and of a counterflow multivortex region in the bulk of the disc part of the unit. Under the tested conditions, the GVU flow is found to be highly spiraling in nature. Secondary flow phenomena develop as swirl becomes stronger. The backflow region develops first via the swirl-decay mechanism in the exhaust line. Near-wall jet formation in the boundary layers near the GVU end-walls eventually results in flow reversal in the bulk of the unit. When the jets grow stronger the counterflow becomes multivortex. The simulation results are validated with experimental data obtained from Stereoscopic Particle Image Velocimetry and surface oil visualization measurements.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 2): 056322, 2011 May.
Article in English | MEDLINE | ID: mdl-21728662

ABSTRACT

This numerical study of an axisymmetric motion of a viscous incompressible fluid in an elongated cylindrical container explains how a swirling inflow develops the global meridional circulation and two U-shaped throughflows (TFs). For moderate values of the Reynolds (Re) number, there is a single U-shaped TF: The fluid moves from the peripheral annular inlet near the sidewall to the dead end, turns around, goes back near the axis, and leaves the container through the central exhaust. As Re increases, vortex breakdown occurs near the dead end. If the exhaust orifice is wide, the ambient fluid is sucked into the container near its axis, reaches the dead-end vicinity, merges with the U-shaped TF, and goes back inside an annular region. Thus, a double counterflow develops, where the fluid moves to the dead end near both the sidewall and the axis and goes back in between. The physical mechanism of the double counterflow is a swirl decay combined with the focused flow convergence near the dead end. This double counterflow is beneficial for combustion applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...