Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 348(6230): 114-7, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25838383

ABSTRACT

The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification.

2.
Nature ; 414(6861): 284-6, 2001 Nov 15.
Article in English | MEDLINE | ID: mdl-11713522

ABSTRACT

A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of approximately 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation. The water-vapour masers that are typical of the giant envelopes therefore are not expected to persist in planetary nebulae. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula.

3.
Nature ; 411(6835): 277-80, 2001 May 17.
Article in English | MEDLINE | ID: mdl-11357123

ABSTRACT

The exact processes by which interstellar matter condenses to form young stars are of great interest, in part because they bear on the formation of planets like our own from the material that fails to become part of the star. Theoretical models suggest that ejection of gas during early phases of stellar evolution is a key mechanism for removing excess angular momentum, thereby allowing material to drift inwards towards the star through an accretion disk. Such ejections also limit the mass that can be accumulated by the stellar core. To date, these ejections have been observed to be bipolar and highly collimated, in agreement with theory. Here we report observations at very high angular resolution of the proper motions of an arc of water-vapour masers near a very young, massive star in Cepheus. We find that the arc of masers can be fitted to a circle with an accuracy of one part in a thousand, and that the structure is expanding. Only a sphere will always produce a circle in projection, so our observations strongly suggest that the perfectly spherical ejection of material from this star took place about 33 years earlier. The spherical symmetry of the ejecta and its episodic nature are very surprising in the light of present theories.

SELECTION OF CITATIONS
SEARCH DETAIL
...