Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 43(7): 1851-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19321186

ABSTRACT

With the aim of improving the quality of the effluent from a waste stabilization pond (WSP) different types of vertical-flow constructed wetlands (VFCWs) and intermittent sand filters (ISFs) were tested at a pilot plant in Aurignac (France). The effectiveness of each design at upgrading the pond effluent was studied over a period of 2 years. Physicochemical parameters were monitored by taking composite samples over 24h and grab samples every week. The hydraulic behaviour of the filters was studied using (NaCl) tracer tests and monitoring the infiltration rate. This paper describes the influence on the performance of the beds of: (a) the characteristics of the medium (type of sand, depth, and presence of Phragmites); (b) feed modes; and (c) the presence of an algae clogging layer. The study demonstrates the viability of VFCWs and ISFs as means of upgrading effluent from WSPs. For hydraulic loads (HL) of up to 80cm/day, both technologies effectively retain algae, complete organic matter degradation, and nitrify the pond effluent. The presence of plants did not significantly affect the performance of the filters although it was important in terms of maintenance. The deeper filters presented better removals for all the parameter tested, due to higher hydraulic detention times (HDTs). The dosing regime and resting period duration all affected the hydraulic performance and purification efficiency of the filters.


Subject(s)
Environmental Restoration and Remediation/instrumentation , Wetlands , France , Pilot Projects , Silicon Dioxide
2.
J Environ Qual ; 37(4): 1644-7, 2008.
Article in English | MEDLINE | ID: mdl-18574198

ABSTRACT

With the aim of improving effluent quality of waste stabilization ponds, different designs of vertical flow constructed wetlands and intermittent sand filters were tested on an experimental full-scale plant within the framework of a European project. The information extracted from this study was completed and updated with heuristic and bibliographic knowledge. The data and knowledge acquired were difficult to integrate into mathematical models because they involve qualitative information and expert reasoning. Therefore, it was decided to develop an environmental decision support system (EDSS-Filter-Design) as a tool to integrate mathematical models and knowledge-based techniques. This paper describes the development of this support tool, emphasizing the collection of data and knowledge and representation of this information by means of mathematical equations and a rule-based system. The developed support tool provides the main design characteristics of filters: (i) required surface, (ii) media type, and (iii) media depth. These design recommendations are based on wastewater characteristics, applied load, and required treatment level data provided by the user. The results of the EDSS-Filter-Design provide appropriate and useful information and guidelines on how to design filters, according to the expert criteria. The encapsulation of the information into a decision support system reduces the design period and provides a feasible, reasoned, and positively evaluated proposal.


Subject(s)
Conservation of Natural Resources , Decision Support Systems, Management , Silicon Dioxide , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...