Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Plant Dis ; 105(12): 4051-4059, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34270912

ABSTRACT

Wheat blast, caused by Pyricularia oryzae Triticum lineage, is a major constraint to wheat production, mainly in the tropics of Brazil, where severe epidemics have been more frequent. We analyzed disease and wheat yield data from 42 uniform field trials conducted over 9 years (2012 to 2020) to assess whether the percent control and yield response were influenced by fungicide type, region (tropical or subtropical), and year. Six treatments were selected, all evaluated in at least 19 trials. Two fungicides were applied as solo active ingredients (MANCozeb, and TEBUconazole), and four were premixes (AZOXystrobin plus TEBU, TriFLoXystrobin plus PROThioconazole, TFLX plus TEBU, and PYRAclostrobin plus EPOXiconazole). Percent control, calculated from back-transforming estimates by a meta-analysis network model fitted to the log of the means, ranged from 43 to 58%, with all but PYRA plus EPOX showing efficacy >52% on average, not differing among them. The variation in both efficacy and yield response was explained by region, and all but TEBU performed better in the subtropics than in the tropics. Yield response from using three sequential sprays was approximately two times greater in the subtropics (319 to 532 kg/ha) than in the tropics (149 to 241.3 kg/ha). No significant decline in fungicide efficacy or yield response was observed in 9 years of study for any of the fungicides. These results reinforce the need to improve control by adopting an integrated management approach in the tropics given poorer performance and lower profitability, especially for the premixes, than in the subtropics.


Subject(s)
Fungicides, Industrial , Brazil , Fungicides, Industrial/pharmacology , Plant Diseases/prevention & control , Triticum
2.
Plant J ; 51(2): 154-64, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17521409

ABSTRACT

In animals, organic cation/carnitine transporters (OCTs) are involved in homeostasis and distribution of various small endogenous amines (e.g. carnitine, choline) and detoxification of xenobiotics such as nicotine. Here, we describe the characterization of AtOCT1, an Arabidopsis protein that shares most of the conserved features of mammalian plasma membrane OCTs. Transient expression of an AtOCT1::GFP fusion protein in onion epidermal cells and Arabidopsis protoplasts supported localization in the plasmalemma. AtOCT1 functionally complemented the Deltacit2/Deltaagp2p yeast strain that is defective in plasma membrane carnitine transport. Disruption of AtOCT1 in an Arabidopsis oct1-1 knockout mutant affected both the expression of carnitine-related genes and the developmental defects induced by exogenous carnitine. RT-PCR and promoter-uidA fusion analysis showed that AtOCT1 was expressed in vascular tissues of various organs and at sites of lateral root formation. Correlating with this expression pattern, oct1-1 seedlings grown in vitro exhibited a higher degree of root branching than the wild-type, showing that the disruption of AtOCT1 affected root development under certain conditions.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Carnitine/metabolism , Organic Cation Transporter 1/genetics , Organic Cation Transporter 1/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Amino Acid Sequence , Cloning, Molecular , Gene Expression Regulation, Plant , Molecular Sequence Data , Mutation , Phylogeny , Saccharomyces cerevisiae
3.
Genet. mol. biol ; 30(3,suppl): 713-733, 2007. ilus, tab
Article in English | LILACS | ID: lil-467252

ABSTRACT

Plant hormones play a crucial role in integrating endogenous and exogenous signals and in determining developmental responses to form the plant body throughout its life cycle. In citrus species, several economically important processes are controlled by phytohormones, including seed germination, secondary growth, fruit abscission and ripening. Integrative genomics is a powerful tool for linking newly researched organisms, such as tropical woody species, to functional studies already carried out on established model organisms. Based on gene orthology analyses and expression patterns, we searched the Citrus Genome Sequencing Consortium (CitEST) database for Expressed Sequence Tags (EST) consensus sequences sharing similarity to known components of hormone metabolism and signaling pathways in model species. More than 600 homologs of functionally characterized hormone metabolism and signal transduction members from model species were identified in citrus, allowing us to propose a framework for phytohormone signaling mechanisms in citrus. A number of components from hormone-related metabolic pathways were absent in citrus, suggesting the presence of distinct metabolic pathways. Our results demonstrated the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.

4.
Genet. mol. biol ; 30(3,suppl): 888-905, 2007. ilus, tab, graf
Article in English | LILACS | ID: lil-467268

ABSTRACT

Water deficit is one of the most critical environmental stresses to which plants are submitted during their life cycle. The evolutionary and economic performance of the plant is affected directly by reducing its survival in the natural environment and its productivity in agriculture. Plants respond to water stress with biochemical and physiological modifications that may be involved in tolerance or adaptation mechanisms. A great number of genes have been identified as transcriptionally regulated for water deficit. EST sequencing projects provide a significant contribution to the discovery of expressed genes. The identification and determination of gene expression patterns is important not only to understand the molecular bases of plant responses but also to improve water stress tolerance. In our citrus transcriptome survey we have attempted to identify homologs to genes known to be induced and regulated under water stress conditions. We have identified 89 transcripts whose deduced amino acid sequences share similarities with proteins involved in uptake and transport of water and ion, 34 similar to components of the osmolyte metabolism, 67 involved in processes of membranes and proteins protection and 115 homologs of reactive oxygen species scavenger. Many drought-inducible genes identified are known to be regulated by development, salt, osmotic and low temperature. Their possible roles in specific or general mechanisms of water stress citrus responses are discussed.

5.
Plant Sci ; 171(3): 300-7, 2006 Sep.
Article in English | MEDLINE | ID: mdl-22980199

ABSTRACT

Drought is a major constraint for the production of common bean (Phaseolus vulgaris L.). To identify molecular responses to water deficit, we performed a differential display RT-PCR (DDRT) analysis using roots of bean plants grown aeroponically and submitted to dehydration. This allowed us to visualise 1200 DDRT bands, 8.7% of which showed a clear regulation by dehydration, and to clone 42 cDNAs, called PvD1 to PvD42. Among them, 20 early-dehydration-responsive cDNAs were selected by reverse northern that were induced or repressed before detectable water status changes and induction of ABA-regulated genes. Northern analysis for 16 PvD clones confirmed these early regulations and allowed us to identify four late dehydration-responsive genes. Their putative involvement in signalling, protein turn-over and translocation, chaperones as well as root growth modulations in response to water stress is discussed.

6.
Plant Mol Biol ; 51(3): 341-9, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12602865

ABSTRACT

A cDNA coding for a putative organic cation transporter (OCT) was isolated from Phaseolus vulgaris roots by differential display RT-PCR and the corresponding full-length cDNA (named PvOCT1) was subsequently obtained by RACE-PCR. Hydropathy profiles of the deduced amino acid sequence (547 residues) predicted the existence of twelve membrane-spanning domains, which are highly conserved in the major facilitator superfamily (MFS). Three specific domains, which characterize organic ion transporters in animals, can also be observed in the predicted protein. In the non-stressed plants, northern analysis showed that PvOCT1 is strongly expressed in roots and stems, while in situ hybridization revealed the presence of PvOCT1 transcripts in phloem cells. In roots PvOCT1 transcript levels transitorily increased after one hour of dehydration and then dramatically decreased. This decrease was associated with enhanced abundance of PvNeED1 mRNA encoding the enzyme thought to catalyze the limiting step of abscisic acid biosynthesis.


Subject(s)
Organic Cation Transporter 1/genetics , Phaseolus/genetics , Plant Proteins/genetics , Plant Structures/metabolism , Water/pharmacology , Amino Acid Sequence , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Gene Expression Regulation, Plant/drug effects , Molecular Sequence Data , Organic Cation Transporter 1/metabolism , Plant Proteins/metabolism , Plant Structures/genetics , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...