Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766097

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.

2.
Science ; 384(6697): eadk0582, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753770

ABSTRACT

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Germinal Center , HIV Antibodies , HIV-1 , Immunization, Secondary , Nanoparticles , mRNA Vaccines , Animals , Humans , Mice , AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Cross Reactions , Gene Knock-In Techniques , Germinal Center/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , HIV-1/genetics , Liposomes , Memory B Cells/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Somatic Hypermutation, Immunoglobulin , mRNA Vaccines/immunology , Female , Mice, Inbred C57BL
3.
Science ; 384(6697): eadj8321, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753769

ABSTRACT

Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Complementarity Determining Regions , Germinal Center , HIV Antibodies , Animals , Humans , AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Complementarity Determining Regions/immunology , Cryoelectron Microscopy , env Gene Products, Human Immunodeficiency Virus/immunology , Germinal Center/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/genetics , Macaca mulatta , Memory B Cells/immunology
4.
Hepatol Commun ; 8(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38563583

ABSTRACT

BACKGROUND: Brief alcohol interventions use patient-provider communication to promote alcohol cessation. We characterized the receipt of this intervention in chronic liver disease (CLD). METHODS: We surveyed patients with CLD for weekly drinking patterns and examined associations with patient-provider communication receipt. RESULTS: Among 840 participants, 82.1% and 56.5% reported ≥1 standard drink weekly and excessive alcohol consumption, respectively. Patient-provider communication was lower in noncirrhotic (adjusted odds ratio:0.34, 95% CI: 0.22-0.54) and nonalcohol-associated CLD (adjusted odds ratio: 0.22, 95% CI: 0.15-0.34) among individuals drinking ≥1 standard drink weekly, and similarly in noncirrhotic CLD (adjusted odds ratio: 0.45, 95% CI: 0.21-0.95) among those with excessive drinking. CONCLUSIONS: Brief alcohol interventions are underutilized in noncirrhotic and nonalcohol-associated CLD.


Subject(s)
Alcohol Drinking , Liver Diseases , Humans , Alcohol Drinking/epidemiology , Health Behavior , Surveys and Questionnaires
5.
Clin Gastroenterol Hepatol ; 22(1): 72-80.e4, 2024 01.
Article in English | MEDLINE | ID: mdl-37442316

ABSTRACT

BACKGROUND & AIMS: Widespread use of direct-acting antivirals for hepatitis C virus infection has been paralleled with increased numbers of patients with hepatocellular carcinoma (HCC) after achieving sustained virologic response (post-SVR HCC) worldwide. Few data compare regional differences in the presentation and prognosis of patients with post-SVR HCC. METHODS: We identified patients with advanced fibrosis (F3/F4) who developed incident post-SVR HCC between March 2015 and October 2021 from 30 sites in Europe, North America, South America, the Middle East, South Asia, East Asia, and Southeast Asia. We compared patient demographics, liver dysfunction, and tumor burden by region. We compared overall survival by region using Kaplan-Meier analysis and identified factors associated with survival using multivariable Cox regression analysis. RESULTS: Among 8796 patients with advanced fibrosis or cirrhosis who achieved SVR, 583 (6.6%) developed incident HCC. There was marked regional variation in the proportion of patients detected by surveillance (range: 59.5%-100%), median maximum tumor diameter (range, 1.8-5.0 cm), and the proportion with multinodular HCC (range, 15.4%-60.8%). The prognosis of patients highly varied by region (hazard ratio range, 1.82-9.92), with the highest survival rates in East Asia, North America, and South America, and the lowest survival rates in the Middle East and South Asia. After adjusting for geographic region, HCC surveillance was associated with early stage detection (Barcelona Clinic Liver Cancer stage 0/A, 71.0% vs 21.3%; P < .0001) and lower mortality rates (adjusted hazard ratio, 0.29; 95% CI, 0.18-0.46). CONCLUSIONS: Clinical characteristics, including early stage detection, and prognosis of post-SVR HCC differed significantly across geographic regions. Surveillance utilization appears to be a high-yield intervention target to improve prognosis among patients with post-SVR HCC globally.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C, Chronic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/epidemiology , Liver Neoplasms/epidemiology , Antiviral Agents/therapeutic use , Sustained Virologic Response , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Liver Cirrhosis/complications , Prognosis , Hepacivirus , Risk Factors
6.
Nat Commun ; 14(1): 7107, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37925510

ABSTRACT

Adjuvants and antigen delivery kinetics can profoundly influence B cell responses and should be critically considered in rational vaccine design, particularly for difficult neutralizing antibody targets such as human immunodeficiency virus (HIV). Antigen kinetics can change depending on the delivery method. To promote extended immunogen bioavailability and to present antigen in a multivalent form, native-HIV Env trimers are modified with short phosphoserine peptide linkers that promote tight binding to aluminum hydroxide (pSer:alum). Here we explore the use of a combined adjuvant approach that incorporates pSer:alum-mediated antigen delivery with potent adjuvants (SMNP, 3M-052) in an extensive head-to-head comparison study with conventional alum to assess germinal center (GC) and humoral immune responses. Priming with pSer:alum plus SMNP induces additive effects that enhance the magnitude and persistence of GCs, which correlate with better GC-TFH cell help. Autologous HIV-neutralizing antibody titers are improved in SMNP-immunized animals after two immunizations. Over 9 months after priming immunization of pSer:alum with either SMNP or 3M-052, robust Env-specific bone marrow plasma cells (BM BPC) are observed. Furthermore, pSer-modification of Env trimer reduce targeting towards immunodominant non-neutralizing epitopes. The study shows that a combined adjuvant approach can augment humoral immunity by modulating immunodominance and shows promise for clinical translation.


Subject(s)
HIV Infections , Immunity, Humoral , Animals , Germinal Center , Adjuvants, Immunologic/pharmacology , Antigens , Primates , Antibodies, Neutralizing , HIV Antibodies , env Gene Products, Human Immunodeficiency Virus
7.
Article in English | MEDLINE | ID: mdl-37868235

ABSTRACT

Growing evidence has demonstrated that many common plant foods such as mangos, kiwis and jackfruit lead to cross reactivity with the latex antigen in latex allergic patients. Here, we discuss the case of a 68 year old female of Bangladeshi descent who developed shortness of breath in the setting of anaphylaxis following the ingestion of jackfruit (Artocarpus heterophyllus). The patient had a history of latex allergy described as mild rash along with seasonal allergies causing mild rhinorrhea, congestion and sneezing. Given the strong cultural significance of jackfruit consumption in Asian countries and growing popularity in the use of jackfruit as a superfood meat alternative in Western nations, along with growing Asian population, there is a need for extensive education on the cross reactivity between plant foods and latex to prevent deadly cross-reactivity induced anaphylaxis. With this case report, we hope to raise awareness of this rare, yet morbid association.

8.
iScience ; 26(10): 108009, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37841584

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has remained a medical threat due to the evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants. A stabilized spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants, with COVA309-35 being the most potent against the autologous virus, as well as Omicron BA.1 and BA.2, and COVA309-22 having binding and neutralization activity against Omicron BA.4/5, BQ.1.1, and XBB.1. When combining the COVA309 mAbs as cocktails or bispecific antibodies, the breadth and potency were improved. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.

9.
Proc Natl Acad Sci U S A ; 120(39): e2303455120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37722054

ABSTRACT

Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Animals , Cattle , Antibodies , Immunoglobulin Fab Fragments/genetics , Disulfides
10.
Nat Commun ; 14(1): 4546, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507365

ABSTRACT

The generation of high-quality antibody responses to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP), the primary surface antigen of Pf sporozoites, is paramount to the development of an effective malaria vaccine. Here we present an in-depth structural and functional analysis of a panel of potent antibodies encoded by the immunoglobulin heavy chain variable (IGHV) gene IGHV3-33, which is among the most prevalent and potent antibody families induced in the anti-PfCSP immune response and targets the Asn-Ala-Asn-Pro (NANP) repeat region. Cryo-electron microscopy (cryo-EM) reveals a remarkable spectrum of helical antibody-PfCSP structures stabilized by homotypic interactions between tightly packed fragments antigen binding (Fabs), many of which correlate with somatic hypermutation. We demonstrate a key role of these mutated homotypic contacts for high avidity binding to PfCSP and in protection from Pf malaria infection. Together, these data emphasize the importance of anti-homotypic affinity maturation in the frequent selection of IGHV3-33 antibodies and highlight key features underlying the potent protection of this antibody family.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Cryoelectron Microscopy , Plasmodium falciparum/genetics , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Protozoan Proteins/chemistry , Antibodies , Antibodies, Protozoan
11.
bioRxiv ; 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37162858

ABSTRACT

Developing broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.1.5. Structural studies revealed that group 1 bnAbs use recurrent germline-encoded CDRH3 features to interact with a conserved RBD region that overlaps with class 4 bnAb site. Group 2 bnAbs recognize a less well-characterized "site V" on the RBD and destabilize spike trimer. The site V has remained largely unchanged in SARS-CoV-2 variants and is highly conserved across diverse sarbecoviruses, making it a promising target for broad coronavirus vaccine development. Our findings suggest that targeted vaccine strategies may be needed to induce effective B cell responses to escape resistant subdominant spike RBD bnAb sites.

12.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37214937

ABSTRACT

Since >3 years, SARS-CoV-2 has plunged humans into a colossal pandemic. Henceforth, multiple waves of infection have swept through the human population, led by variants that were able to partially evade acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N-glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune-response, both of which are impacted by host-installed N-glycans. Using highly-sensitive DeGlyPHER approach, we compared the N-glycan landscape on spikes of the SARS-CoV-2 Wuhan-Hu-1 strain to seven WHO-defined variants of concern/interest, using recombinantly expressed, soluble spike-protein trimers, sharing same stabilizing-mutations. We found that N-glycan processing is conserved at most sites. However, in multiple variants, processing of N-glycans from high mannose- to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function.

13.
iScience ; 26(4): 106540, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37063468

ABSTRACT

SARS-CoV-2 variants evade current monoclonal antibody therapies. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies taking advantage of the avidity and synergy provided by targeting different epitopes. Here we used controlled Fab-arm exchange to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader antibodies that also neutralize SARS-CoV. We demonstrated that the parental antibodies rely on avidity for neutralization using bsAbs containing one irrelevant Fab arm. Using mass photometry to measure the formation of antibody:spike complexes, we determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike, observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent agents to combat circulating and future SARS-like coronaviruses.

15.
Hepatol Commun ; 7(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36881615

ABSTRACT

BACKGROUND: Patients with cirrhosis and subcentimeter lesions on liver ultrasound are recommended to undergo short-interval follow-up ultrasound because of the presumed low risk of primary liver cancer (PLC). AIMS: The aim of this study is to characterize recall patterns and risk of PLC in patients with subcentimeter liver lesions on ultrasound. METHODS: We conducted a multicenter retrospective cohort study among patients with cirrhosis or chronic hepatitis B infection who had subcentimeter ultrasound lesions between January 2017 and December 2019. We excluded patients with a history of PLC or concomitant lesions ≥1 cm in diameter. We used Kaplan Meier and multivariable Cox regression analyses to characterize time-to-PLC and factors associated with PLC, respectively. RESULTS: Of 746 eligible patients, most (66.0%) had a single observation, and the median diameter was 0.7 cm (interquartile range: 0.5-0.8 cm). Recall strategies varied, with only 27.8% of patients undergoing guideline-concordant ultrasound within 3-6 months. Over a median follow-up of 26 months, 42 patients developed PLC (39 HCC and 3 cholangiocarcinoma), yielding an incidence of 25.7 cases (95% CI, 6.2-47.0) per 1000 person-years, with 3.9% and 6.7% developing PLC at 2 and 3 years, respectively. Factors associated with time-to-PLC were baseline alpha-fetoprotein >10 ng/mL (HR: 4.01, 95% CI, 1.85-8.71), platelet count ≤150 (HR: 4.90, 95% CI, 1.95-12.28), and Child-Pugh B cirrhosis (vs. Child-Pugh A: HR: 2.54, 95% CI, 1.27-5.08). CONCLUSIONS: Recall patterns for patients with subcentimeter liver lesions on ultrasound varied widely. The low risk of PLC in these patients supports short-interval ultrasound in 3-6 months, although diagnostic CT/MRI may be warranted for high-risk subgroups such as those with elevated alpha-fetoprotein levels.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , alpha-Fetoproteins , Carcinoma, Hepatocellular/diagnostic imaging , Retrospective Studies , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/epidemiology , Liver Cirrhosis/complications , Liver Cirrhosis/diagnostic imaging , Bile Ducts, Intrahepatic
16.
J Clin Invest ; 133(8)2023 04 17.
Article in English | MEDLINE | ID: mdl-36862518

ABSTRACT

The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Antibodies , Epitopes , Antibodies, Viral , Antibodies, Neutralizing
18.
bioRxiv ; 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36263063

ABSTRACT

The worldwide pandemic caused by SARS-CoV-2 has remained a human medical threat due to the continued evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants for therapeutic and prophylactic use. A stabilized autologous SARS-CoV-2 spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants of concern, with COVA309-35 being the most potent against the autologous virus, as well as against Omicron BA.1 and BA.2. When combining the COVA309 mAbs as cocktails or bispecific antibody formats, the breadth and potency was significantly improved against all tested variants. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.

19.
Fam Med ; 54(8): 615-620, 2022 09.
Article in English | MEDLINE | ID: mdl-36098692

ABSTRACT

BACKGROUND AND OBJECTIVES: Board certification is acknowledged as the mainstay for ensuring quality physician-delivered health care within medical specialties. The American College of Osteopathic Family Physicians (ACOFP) administers the American Osteopathic Board of Family Physicians' (AOBFP) In-Service Examination (ISE) to provide residents and program directors with a formative examination to assess competency and preparation for successful completion of the AOBFP certifying examination (CE). Unique assessment processes are integral to monitoring development of the osteopathic family physician throughout training and into practice, and to verify their competency for the safety and protection of the public. This study sought to investigate whether performance on the AOBFP ISE predicted performance on the AOBFP CE, and thereby successfully equipped residents to safely enter medical practice. METHODS: In 2020, data from 1,893 PGY-1 through PGY-3 residents (2016-2018), whose ISE scores could be matched with scores on the AOBFP initial board CE, were analyzed for this study. RESULTS: Correlations among ISE administrations across 3 years of postgraduate medical education were in the mid-to-high .6 range; the ISE scores correlated with CE scores in the mid .4 to high .5 range. Less reliable measures of positive predictive value were 0.99, and sensitivity was 0.91. CONCLUSIONS: Results suggest that ISE administrations during residency training are effective in developing remediation strategies for subsequent successful CE performance. The inclusion of osteopathic principles in the AOBFP CE necessitates inclusion of osteopathic content in resident training exams like ISE.


Subject(s)
Internship and Residency , Osteopathic Medicine , Osteopathic Physicians , Certification , Educational Measurement/methods , Humans , Osteopathic Medicine/education , Osteopathic Physicians/education , United States
20.
Nature ; 609(7929): 998-1004, 2022 09.
Article in English | MEDLINE | ID: mdl-36131022

ABSTRACT

Germinal centres are the engines of antibody evolution. Here, using human immunodeficiency virus (HIV) Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B (BGC) cells that last for at least 6 months. A 186-fold increase in BGC cells was present by week 10 compared with conventional immunization. Single-cell transcriptional profiling showed that both light- and dark-zone germinal centre states were sustained. Antibody somatic hypermutation of BGC cells continued to accumulate throughout the 29-week priming period, with evidence of selective pressure. Env-binding BGC cells were still 49-fold above baseline at 29 weeks, which suggests that they could remain active for even longer periods of time. High titres of HIV-neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing considerable immunodominance challenges for B cells1,2. Memory B cells generated under these long priming conditions had higher levels of antibody somatic hypermutation, and both memory B cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous BGC cell lineage phylogenies spanning more than the 6-month germinal centre period were identified, demonstrating continuous germinal centre activity and selection for at least 191 days with no further antigen exposure. A long-prime, slow-delivery (12 days) immunization approach holds promise for difficult vaccine targets and suggests that patience can have great value for tuning of germinal centres to maximize antibody responses.


Subject(s)
Antibody Affinity , B-Lymphocytes , Cell Movement , Clone Cells , Germinal Center , HIV Antibodies , Immunization , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibody Affinity/genetics , Antibody Affinity/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Clone Cells/cytology , Clone Cells/immunology , Epitopes, B-Lymphocyte/immunology , Gene Expression Profiling , Germinal Center/cytology , Germinal Center/immunology , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Humans , Immunization, Secondary , Macaca mulatta/immunology , Macaca mulatta/virology , Memory B Cells/cytology , Memory B Cells/immunology , Single-Cell Analysis , Somatic Hypermutation, Immunoglobulin/genetics , Somatic Hypermutation, Immunoglobulin/immunology , Time Factors , env Gene Products, Human Immunodeficiency Virus/administration & dosage , env Gene Products, Human Immunodeficiency Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...