Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 153(1): 678, 2023 01.
Article in English | MEDLINE | ID: mdl-36732265

ABSTRACT

Seagrasses play an important role in coastal ecosystems and serve as important marine carbon stores. Acoustic monitoring techniques exploit the sensitivity of underwater sound to bubbles, which are produced as a byproduct of photosynthesis and present within the seagrass tissue. To make accurate assessments of seagrass biomass and productivity, a model is needed to describe acoustic propagation through the seagrass meadow that includes the effects of gas contained within the seagrass leaves. For this purpose, a new seagrass leaf model is described for Thalassia testudinum that consists of a comparatively rigid epidermis that composes the outer shell of the leaf and comparatively compliant aerenchyma that surrounds the gas channels on the interior of the leaf. With the bulk modulus and density of the seagrass tissue determined by previous work, this study focused on characterizing the shear moduli of the epidermis and aerenchyma. These properties were determined through a combination of dynamic mechanical analysis and acoustic resonator measurements coupled with microscopic imagery and finite element modeling. The shear moduli varied as a function of length along the leaves with values of 100 and 1.8 MPa at the basal end and 900 and 3.7 MPa at the apical end for the epidermis and aerenchyma, respectively.


Subject(s)
Hydrocharitaceae , Ecosystem , Finite Element Analysis , Biomass , Acoustics , Plant Leaves
2.
Vet Sci ; 7(3)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967324

ABSTRACT

The Varroa destructor mite has been associated with the recent decline in honey bee populations. While experimental data are crucial in understanding declines, insights can be gained from models of honey bee populations. We add the influence of the V. destructor mite to our existing honey bee model in order to better understand the impact of mites on honey bee colonies. Our model is based on differential equations which track the number of bees in each day in the life of the bee and accounts for differences in the survival rates of different bee castes. The model shows that colony survival is sensitive to the hive grooming rate and reproductive rate of mites, which is enhanced in drone capped cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...