Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Ann Biomed Eng ; 52(6): 1625-1637, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409434

ABSTRACT

Binding kinetics play an important role in cancer diagnosis and therapeutics. However, current methods of quantifying binding kinetics fail to consider the three-dimensional environment that drugs and imaging agents experience in biological tissue. In response, a methodology to assay agent binding and dissociation in 3-D tissue culture was developed using paired-agent molecular imaging principles. To test the methodology, the uptakes of ABY-029 (an IRDye 800CW-labeled epidermal growth factor receptor (EGFR)-targeted antibody mimetic) and IRDye-700DX carboxylate in 3-D spheroids were measured in four different human cancer cell lines throughout staining and rinsing. A compartment model (optimized for the application) was then fit to the kinetic curves of both imaging agents to estimate binding and dissociation rate constants of the EGFR-targeted ABY-029 agent. A statistically significant correlation was observed between apparent association rate constant (k3) and the receptor concentration experimentally and in simulations (r = 0.99, p < 0.05). A statistically significant difference was found between effective k3 (apparent rate constant of ABY-029 binding to EGFR) values for cell lines with varying levels of EGFR expression (p < 0.05), with no significant difference found between cell lines and controls for other fit parameters. Additionally, a similar binding affinity profile compared to a gold standard method was determined by this model. This low-cost methodology to quantify imaging agent or drug binding affinity in clinically relevant 3-D tumor spheroid models can be used to guide timing of imaging in molecular guided surgery and could have implications in drug development.


Subject(s)
ErbB Receptors , Spheroids, Cellular , Humans , Spheroids, Cellular/metabolism , ErbB Receptors/metabolism , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/diagnostic imaging , Neoplasms/pathology , Cell Culture Techniques, Three Dimensional
2.
Exp Dermatol ; 33(1): e14949, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37864429

ABSTRACT

Intraoperative margin analysis is crucial for the successful removal of cutaneous squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have previously demonstrated potential for facilitating rapid and complete tumour removal using intraoperative margin assessment for basal cell carcinoma. However, the varied morphologies of cSCC present challenges for AI margin assessment. The aim of this study was to develop and evaluate the accuracy of an AI algorithm for real-time histologic margin analysis of cSCC. To do this, a retrospective cohort study was conducted using frozen cSCC section slides. These slides were scanned and annotated, delineating benign tissue structures, inflammation and tumour to develop an AI algorithm for real-time margin analysis. A convolutional neural network workflow was used to extract histomorphological features predictive of cSCC. This algorithm demonstrated proof of concept for identifying cSCC with high accuracy, highlighting the potential for integration of AI into the surgical workflow. Incorporation of AI algorithms may improve efficiency and completeness of real-time margin assessment for cSCC removal, particularly in cases of moderately and poorly differentiated tumours/neoplasms. Further algorithmic improvement incorporating surrounding tissue context is necessary to remain sensitive to the unique epidermal landscape of well-differentiated tumours, and to map tumours to their original anatomical position/orientation.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Deep Learning , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Mohs Surgery , Skin Neoplasms/pathology , Retrospective Studies , Frozen Sections , Artificial Intelligence , Carcinoma, Basal Cell/pathology
3.
Front Oncol ; 13: 1196517, 2023.
Article in English | MEDLINE | ID: mdl-37427140

ABSTRACT

Background: Mohs micrographic surgery is a procedure used for non-melanoma skin cancers that has 97-99% cure rates largely owing to 100% margin analysis enabled by en face sectioning with real-time, iterative histologic assessment. However, the technique is limited to small and aggressive tumors in high-risk areas because the histopathological preparation and assessment is very time intensive. To address this, paired-agent imaging (PAI) can be used to rapidly screen excised specimens and identify tumor positive margins for guided and more efficient microscopic evaluation. Methods: A mouse xenograft model of human squamous cell carcinoma (n = 8 mice, 13 tumors) underwent PAI. Targeted (ABY-029, anti-epidermal growth factor receptor (EGFR) affibody molecule) and untargeted (IRDye 680LT carboxylate) imaging agents were simultaneously injected 3-4 h prior to surgical tumor resection. Fluorescence imaging was performed on main, unprocessed excised specimens and en face margins (tissue sections tangential to the deep margin surface). Binding potential (BP) - a quantity proportional to receptor concentration - and targeted fluorescence signal were measured for each, and respective mean and maximum values were analyzed to compare diagnostic ability and contrast. The BP and targeted fluorescence of the main specimen and margin samples were also correlated with EGFR immunohistochemistry (IHC). Results: PAI consistently outperformed targeted fluorescence alone in terms of diagnostic ability and contrast-to-variance ratio (CVR). Mean and maximum measures of BP resulted in 100% accuracy, while mean and maximum targeted fluorescence signal offered 97% and 98% accuracy, respectively. Moreover, maximum BP had the greatest average CVR for both main specimen and margin samples (average 1.7 ± 0.4 times improvement over other measures). Fresh tissue margin imaging improved similarity with EGFR IHC volume estimates compared to main specimen imaging in line profile analysis; and margin BP specifically had the strongest concordance (average 3.6 ± 2.2 times improvement over other measures). Conclusions: PAI was able to reliably distinguish tumor from normal tissue in fresh en face margin samples using the single metric of maximum BP. This demonstrated the potential for PAI to act as a highly sensitive screening tool to eliminate the extra time wasted on real-time pathological assessment of low-risk margins.

4.
medRxiv ; 2023 May 16.
Article in English | MEDLINE | ID: mdl-37293008

ABSTRACT

Importance: Intraoperative margin analysis is crucial for the successful removal of cutaneous squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have previously demonstrated potential for facilitating rapid and complete tumor removal using intraoperative margin assessment for basal cell carcinoma. However, the varied morphologies of cSCC present challenges for AI margin assessment. Objective: To develop and evaluate the accuracy of an AI algorithm for real-time histologic margin analysis of cSCC. Design: A retrospective cohort study was conducted using frozen cSCC section slides and adjacent tissues. Setting: This study was conducted in a tertiary care academic center. Participants: Patients undergoing Mohs micrographic surgery for cSCC between January and March 2020. Exposures: Frozen section slides were scanned and annotated, delineating benign tissue structures, inflammation, and tumor to develop an AI algorithm for real-time margin analysis. Patients were stratified by tumor differentiation status. Epithelial tissues including epidermis and hair follicles were annotated for moderate-well to well differentiated cSCC tumors. A convolutional neural network workflow was used to extract histomorphological features predictive of cSCC at 50-micron resolution. Main Outcomes and Measures: The performance of the AI algorithm in identifying cSCC at 50-micron resolution was reported using the area under the receiver operating characteristic curve. Accuracy was also reported by tumor differentiation status and by delineation of cSCC from epidermis. Model performance using histomorphological features alone was compared to architectural features (i.e., tissue context) for well-differentiated tumors. Results: The AI algorithm demonstrated proof of concept for identifying cSCC with high accuracy. Accuracy differed by differentiation status, driven by challenges in separating cSCC from epidermis using histomorphological features alone for well-differentiated tumors. Consideration of broader tissue context through architectural features improved the ability to delineate tumor from epidermis. Conclusions and Relevance: Incorporating AI into the surgical workflow may improve efficiency and completeness of real-time margin assessment for cSCC removal, particularly in cases of moderately and poorly differentiated tumors/neoplasms. Further algorithmic improvement is necessary to remain sensitive to the unique epidermal landscape of well-differentiated tumors, and to map tumors to their original anatomical position/orientation. Future studies should assess the efficiency improvements and cost benefits and address other confounding pathologies such as inflammation and nuclei. Funding sources: JL is supported by NIH grants R24GM141194, P20GM104416 and P20GM130454. Support for this work was also provided by the Prouty Dartmouth Cancer Center development funds. Key Points: Question: How can the efficiency and accuracy of real-time intraoperative margin analysis for the removal of cutaneous squamous cell carcinoma (cSCC) be improved, and how can tumor differentiation be incorporated into this approach?Findings: A proof-of-concept deep learning algorithm was trained, validated, and tested on frozen section whole slide images (WSI) for a retrospective cohort of cSCC cases, demonstrating high accuracy in identifying cSCC and related pathologies. Histomorphology alone was found to be insufficient to delineate tumor from epidermis in histologic identification of well-differentiated cSCC. Incorporation of surrounding tissue architecture and shape improved the ability to delineate tumor from normal tissue.Meaning: Integrating artificial intelligence into surgical procedures has the potential to enhance the thoroughness and efficiency of intraoperative margin analysis for cSCC removal. However, accurately accounting for the epidermal tissue based on the tumor's differentiation status requires specialized algorithms that consider the surrounding tissue context. To meaningfully integrate AI algorithms into clinical practice, further algorithmic refinement is needed, as well as the mapping of tumors to their original surgical site, and evaluation of the cost and efficacy of these approaches to address existing bottlenecks.

5.
Article in English | MEDLINE | ID: mdl-37180093

ABSTRACT

Binding kinetics play an important role in cancer diagnosis and therapeutics. However, current methods of quantifying binding kinetics fail to consider the three-dimensional environment that drugs and imaging agents experience in biological tissue. In response, a methodology to assay agent binding and dissociation in 3D tissue culture was developed using paired-agent molecular imaging principles. To test the methodology, the uptakes of ABY-029 (an IRDye 800CW-labeled epidermal growth factor receptor (EGFR)-targeted antibody-mimetic) and IRDye 700DX-carboxylate in 3D spheroids were measured in four different human cancer cell lines throughout staining and rinsing. A compartment model (optimized for the application) was then fit to the kinetic curves of both imaging agents to estimate binding and dissociation rate constants of the EGFR targeted ABY-029 agent. A linear correlation was observed between apparent association rate constant (k3) and the receptor concentration experimentally and in simulations (r=0.99, p<0.05). Additionally, a similar binding affinity profile compared to a gold standard method was determined by this model. This low-cost methodology to quantify imaging agent or drug binding affinity in clinically relevant 3D tumor spheroid models, can be used to guide timing of imaging in molecular guided surgery and could have implications in drug development.

6.
Biomed Opt Express ; 12(3): 1248-1262, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33796351

ABSTRACT

This work concerns a fluorescence optical projection tomography system for low scattering tissue, like lymph nodes, with angular-domain rejection of highly scattered photons. In this regime, filtered backprojection (FBP) image reconstruction has been shown to provide reasonable quality images, yet here a comparison of image quality between images obtained by FBP and iterative image reconstruction with a Monte Carlo generated system matrix, demonstrate measurable improvements with the iterative method. Through simulated and experimental phantoms, iterative algorithms consistently outperformed FBP in terms of contrast and spatial resolution. Moreover, when projection number was reduced, in order to reduce total imaging time, iterative reconstruction suppressed artifacts that hampered the performance of FBP reconstruction (structural similarity of the reconstructed images with "truth" was improved from 0.15 ± 1.2 × 10-3 to 0.66 ± 0.02); and although the system matrix was generated for homogenous optical properties, when heterogeneity (62.98 cm-1 variance in µs ) was introduced to simulated phantoms, the results were still comparable (structural similarity homo: 0.67 ± 0.02 vs hetero: 0.66 ± 0.02).

7.
Mol Imaging Biol ; 23(4): 537-549, 2021 08.
Article in English | MEDLINE | ID: mdl-33591478

ABSTRACT

PURPOSE: Correctly identifying nodal status is recognized as a critical prognostic factor in many cancer types and is essential to guide adjuvant treatment. Currently, surgical removal of lymph nodes followed by pathological examination is commonly performed as a standard-of-care to detect node metastases. However, conventional pathology protocols are time-consuming, yet less than 1 % of lymph node volumes are examined, resulting in a 30-60 % rate of missed micrometastases (0.2-2 mm in size). PROCEDURES: This study presents a method to fluorescently stain excised lymph nodes using paired-agent molecular imaging principles, which entail co-administration of a molecular-targeted imaging agent with a suitable control (untargeted) agent, whereby any nonspecific retention of the targeted agent is accounted for by the signal from the control agent. Specifically, it was demonstrated that by dual-needle continuous infusion of either an antibody-based imaging agent pair (epidermal growth factor receptor (EGFR) targeted agent: IRDye-800CW labeled Cetuximab; control agent: IRDye-700DX-IgG) or an Affibody-based pair (EGFR targeted Affibody® agent: ABY-029; control agent IRDYe-700DX carboxylate) at 0.3 ml/min. RESULTS: The results demonstrated the possibility to achieve >99 % sensitivity and > 95 % specificity for detection of a single micrometastasis (~0.2 mm diameter) in a whole lymph node within 22 min of tissue processing time. CONCLUSION: The detection capabilities offer substantial improvements over existing intraoperative lymph node biopsy methods (e.g., frozen pathology has a micrometastasis sensitivity <20 %).


Subject(s)
Benzenesulfonates , Breast Neoplasms/diagnostic imaging , Cetuximab/metabolism , Indoles , Lymph Nodes/diagnostic imaging , Optical Imaging/methods , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Female , Fluorescence , Humans , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymph Nodes/surgery , Neoplasm Micrometastasis , Staining and Labeling/methods , Tumor Cells, Cultured
8.
Appl Opt ; 60(1): 135-146, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33362081

ABSTRACT

Transmittance and fluorescence optical projection tomography can offer high-resolution and high-contrast visualization of whole biological specimens; however, applications are limited to samples exhibiting minimal light scattering. Our previous work demonstrated that angular-domain techniques permitted imaging of ∼1cm diameter noncleared lymph nodes because of their low scattering nature. Here, an angle-restricted transmittance/fluorescence system is presented and characterized in terms of geometric and fluorescence concentration reconstruction accuracy as well as spatial resolution, depth of focus, and fluorescence limits of detection. Using lymph node mimicking phantoms, results demonstrated promising detection and localization capabilities relevant for clinical lymph node applications.


Subject(s)
Lymph Nodes/diagnostic imaging , Spectrometry, Fluorescence/methods , Tomography, Optical/methods , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging
9.
J Biomed Opt ; 24(11): 1-4, 2019 11.
Article in English | MEDLINE | ID: mdl-31705637

ABSTRACT

Lymph node biopsy is a primary means of staging breast cancer, yet standard pathological techniques are time-consuming and typically sample less than 1% of the total node volume. A low-cost fluorescence optical projection tomography (OPT) protocol is demonstrated for rapid imaging of whole lymph nodes in three dimensions. The relatively low scattering properties of lymph node tissue can be leveraged to significantly improve spatial resolution of lymph node OPT by employing angular restriction of photon detection. It is demonstrated through porcine lymph node metastases models that simple filtered-backprojection reconstruction is sufficient to detect and localize 200-µm-diameter metastases (the smallest clinically significant) in 1-cm-diameter lymph nodes.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Lymph Nodes/pathology , Lymphatic Metastasis/diagnostic imaging , Tomography, Optical/methods , Animals , Biopsy , Cell Culture Techniques , Cell Line, Tumor , Female , Green Fluorescent Proteins/metabolism , Humans , Scattering, Radiation , Spheroids, Cellular , Swine
10.
J Surg Oncol ; 118(2): 301-314, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30196532

ABSTRACT

Identification of cancer spread to tumor-draining lymph nodes offers critical information for guiding treatment in many cancer types. Current clinical methods of nodal staging are invasive and can have substantial negative side effects. Molecular imaging protocols have long been proposed as a less invasive means of nodal staging, having the potential to enable highly sensitive and specific evaluations. This review article summarizes the current status and future perspectives for molecular targeted nodal staging.


Subject(s)
Lymph Nodes/diagnostic imaging , Molecular Imaging/methods , Neoplasms/diagnostic imaging , Animals , Humans , Lymph Nodes/pathology , Neoplasm Staging , Neoplasms/pathology , Sentinel Lymph Node Biopsy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...