Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34947487

ABSTRACT

A correct assessment of the pathologies that can affect a reinforced concrete structure is required in order to define the repair procedure. This work addresses the challenge of quantifying chlorides and sulphates directly on the surface of concrete. The quantification was carried out by means of X-ray fluorescence analysis on the surface of concrete specimens at different points with portable equipment. Concrete prisms were made with different amounts of NaCl and Na2SO4. To avoid the influence of coarse aggregate, a qualitative estimate of the amount of coarse aggregate analyzed has been made, although the results show that there is no significant influence. Monte Carlo simulations were carried out in order to establish the necessary number of random analyses of the mean value to be within an acceptable range of error. In the case of quantifying sulphates, it is necessary to carry out six random analyses on the surface, and eight measurements in the case of quantifying chlorides; in this way, it is ensured that errors are below 10% in 95% of the cases. The results of the study highlight that a portable XRF device can be used in situ to obtain concentrations of chlorides and sulphates of a concrete surface with good accuracy. There is no need to take samples and bring them to a laboratory, allowing lower overall costs in inspection and reparation works.

2.
Materials (Basel) ; 14(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530387

ABSTRACT

To ensure that a structure will last throughout its service life, repairing reinforced concrete entails, among others, correctly marking off the area affected by aggressive agents that may deteriorate both the concrete and the steel. Chloride, the most damaging source of reinforcement corrosion, may diffuse to a greater or lesser distance from the surface depending on the ease of penetration. In this study, we calibrated a handheld X-ray fluorescence analyser (hXRF) and used it to quantify the chloride concentration in cement-based materials. The findings were verified against a series of samples of known concentration to establish a suitable correction factor. Chloride ions were quantified precisely and accurately with the hXRF instrument, and we calculated a correction factor of 1.16. The instrument and the information recorded were used to quantify the chloride ion content in different parts of an existing structure. The analyser identified apparently healthy areas that could, nonetheless, pose oxidation problems in the near future due to significant chloride concentration. Chloride quantification data at different depths can be used to draw diffusion or penetration profiles and to determine whether ion concentration around the reinforcement is within the recommended limits. The method developed can be applied in situ to quickly locate the most critical areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...