Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 14: 1384611, 2024.
Article in English | MEDLINE | ID: mdl-38808065

ABSTRACT

Neisseria gonorrhoeae (Ng) is a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. Ng has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. Ng successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing. During colonization, Ng manipulates the actin cytoskeleton to invade and create an intracellular niche supportive of bacterial replication. The cellular reservoir(s) supporting bacterial replication and persistence in gonorrhea infections are poorly defined. The manner in which gonococci colonize macrophages points to this innate immune phagocyte as a strong candidate for a cellular niche during natural infection. Here we investigate whether nutrients availability and immunological polarization alter macrophage colonization by Ng. Differentiation of macrophages in pro-inflammatory (M1-like) and tolerogenic (M2-like) phenotypes prior to infection reveals that Ng can invade macrophages in all activation states, albeit with lower efficiency in M1-like macrophages. These results suggest that during natural infection, bacteria could invade and grow within macrophages regardless of the nutrients availability and the macrophage immune activation status.


Subject(s)
Macrophages , Neisseria gonorrhoeae , Nutrients , Neisseria gonorrhoeae/immunology , Macrophages/microbiology , Macrophages/immunology , Humans , Gonorrhea/microbiology , Gonorrhea/immunology , Macrophage Activation , Host-Pathogen Interactions/immunology
2.
bioRxiv ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38045297

ABSTRACT

Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.

3.
J Bacteriol ; 203(13): e0002721, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33875547

ABSTRACT

Ehrlichia chaffeensis causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's ECH_0660 gene, which encodes a phage head-to-tail connector protein, resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In this study, we describe the characterization of a cluster of seven genes spanning from ECH_0659 to ECH_0665, which contained four genes encoding bacterial phage proteins, including the ECH_0660 gene. Assessment of the promoter region upstream of the first gene of the seven genes (ECH_0659) in Escherichia coli demonstrated transcriptional enhancement under zinc and iron starvation conditions. Furthermore, transcription of the seven genes was significantly higher under zinc and iron starvation conditions for E. chaffeensis carrying a mutation in the ECH_0660 gene compared to the wild-type pathogen. In contrast, for the ECH_0665 gene mutant with the function disruption, transcription from the genes was mostly similar to that of the wild type or was moderately downregulated. Recently, we reported that this mutation caused a minimal impact on the pathogen's in vivo growth, as it persisted similarly to the wild type. The current study is the first to describe how zinc and iron contribute to E. chaffeensis biology. Specifically, we demonstrated that the functional disruption in the gene encoding the phage head-to-tail connector protein in E. chaffeensis results in the enhanced transcription of seven genes, including those encoding phage proteins, under zinc and iron limitation. IMPORTANCE Ehrlichia chaffeensis, a tick-transmitted bacterium, causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's gene encoding a phage head-to-tail connector protein resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In the current study, we investigated if the functional disruption in the phage head-to-tail connector protein gene caused transcriptional changes resulting from metal ion limitations. This is the first study describing how zinc and iron may contribute to E. chaffeensis replication.


Subject(s)
Bacterial Proteins/genetics , Ehrlichia chaffeensis/genetics , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial/genetics , Iron/pharmacology , Mutation , Zinc/pharmacology , Animals , Bacteriophages/genetics , Ehrlichiosis/microbiology , Escherichia coli/genetics , Humans , Immunity , Monocytes/microbiology , Ticks/microbiology , Transcription, Genetic
4.
Microbiology (Reading) ; 160(Pt 12): 2583-2594, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25223341

ABSTRACT

The QseBC two-component system plays a pivotal role in regulating virulence and biofilm growth of the oral pathogen Aggregatibacter actinomycetemcomitans. We previously showed that QseBC autoregulates the ygiW-qseBC operon. In this study, we characterized the promoter that drives ygiW-qseBC expression. Using lacZ transcriptional fusion constructs and 5'-rapid amplification of cDNA ends, we showed that ygiW-qseBC expression is driven by a promoter that initiates transcription 53 bases upstream of ygiW and identified putative cis-acting promoter elements, whose function was confirmed using site-specific mutagenesis. Using electrophoretic mobility shift assays, two trans-acting proteins were shown to interact with the ygiW-qseBC promoter. The QseB response regulator bound to probes containing the direct repeat sequence CTTAA-N6-CTTAA, where the CTTAA repeats flank the -35 element of the promoter. The ygiW-qseBC expression could not be detected in A. actinomycetemcomitans ΔqseB or ΔqseBC strains, but was restored to WT levels in the ΔqseBC mutant when complemented by single copy chromosomal insertion of qseBC. Interestingly, qseB partially complemented the ΔqseBC strain, suggesting that QseB could be activated in the absence of QseC. QseB activation required its phosphorylation since complementation did not occur using qseB(pho-), encoding a protein with the active site aspartate substituted with alanine. These results suggest that QseB is a strong positive regulator of ygiW-qseBC expression. In addition, integration host factor (IHF) bound to two sites in the promoter region and an additional site near the 5' end of the ygiW ORF. The expression of ygiW-qseBC was increased by twofold in ΔihfA and ΔihfB strains of A. actinomycetemcomitans, suggesting that IHF is a negative regulator of the ygiW-qseBC operon.


Subject(s)
Aggregatibacter actinomycetemcomitans/genetics , Gene Expression Regulation, Bacterial , Integration Host Factors/metabolism , Operon , Transcription Factors/metabolism , Transcription, Genetic , Aggregatibacter actinomycetemcomitans/physiology , Artificial Gene Fusion , Biofilms/growth & development , Gene Expression Profiling , Genes, Reporter , Mutagenesis, Site-Directed , Promoter Regions, Genetic , Transcription Initiation Site , Virulence , beta-Galactosidase/analysis , beta-Galactosidase/genetics
5.
FEMS Microbiol Lett ; 357(2): 184-94, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24965736

ABSTRACT

In this study, we show that integration host factor protein (IHF) is required for replication of pYGK plasmids in Aggregatibacter actinomycetemcomitans. YGK plasmids were not replicated in A. actinomycetemcomitans strains lacking either the α- or ß- subunit of IHF. However, the deletion mutants were complemented, and plasmid replication was restored when the promoter region and gene for either ihfA or ihfB was cloned into pYGK. We also identified two motifs that resemble the consensus IHF-binding site in a 813-bp fragment containing the pYGK origin of replication. Using electrophoretic mobility shift assays, purified IHFα-IHFß protein complex was shown to bind to probes containing either of these motifs. To our knowledge, this is the first report showing that plasmid replication is IHF-dependent in the family Pasteurellaceae. In addition, using site-direct mutagenesis, the XbaI and KpnI restriction sites in the suicide vector pJT1 were modified to generate plasmid pJT10. The introduction of these new unique sites in pJT10 facilitates the transfer of transcriptional or translational lacZ fusion constructs for the generation of single-copy chromosomal insertion of the reporter construct. Plasmid pJT10 and its derivatives will be useful for genetic studies in Aggregatibacter (Actinobacillus) and probably other genera of Pasteurellaceae, including Haemophilus, Pasteurella, and Mannheimia.


Subject(s)
Aggregatibacter actinomycetemcomitans/genetics , Aggregatibacter actinomycetemcomitans/metabolism , DNA Replication , Integration Host Factors/metabolism , Plasmids , Binding Sites , Electrophoretic Mobility Shift Assay , Gene Deletion , Genetic Complementation Test , Genetic Vectors , Integration Host Factors/genetics , Protein Binding , Replication Origin
6.
J Bacteriol ; 196(8): 1597-607, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24532769

ABSTRACT

We previously showed that the Aggregatibacter actinomycetemcomitans lsrACDBFG and lsrRK operons are regulated by LsrR and cyclic AMP receptor protein (CRP) and that proper regulation of the lsr locus is required for optimal biofilm growth by A. actinomycetemcomitans. Here, we identified sequences that reside immediately upstream from both the lsrA and lsrR start codons that closely resemble the consensus recognition sequence of Escherichia coli integration host factor (IHF) protein. A. actinomycetemcomitans IHFα and IHFß were expressed and purified as hexahistidine fusion proteins, and using electrophoretic mobility shift assays (EMSAs), the IHFα-IHFß protein complex was shown to bind to probes containing the putative IHF recognition sequences. In addition, single-copy chromosomal insertions of lsrR promoter-lacZ and lsrA promoter-lacZ transcriptional fusions in wild-type A. actinomycetemcomitans and ΔihfA and ΔihfB mutant strains showed that IHF differentially regulates the lsr locus and functions as a negative regulator of lsrRK and a positive regulator of lsrACDBFG. Deletion of ihfA or ihfB also reduced biofilm formation and altered biofilm architecture relative to the wild-type strain, and these phenotypes were partially complemented by a plasmid-borne copy of ihfA or ihfB. Finally, using 5' rapid amplification of cDNA ends (RACE), two transcriptional start sites (TSSs) and two putative promoters were identified for lsrRK and three TSSs and putative promoters were identified for lsrACDBFG. The function of the two lsrRK promoters and the positive regulatory role of IHF in regulating lsrACDBFG expression were confirmed with a series of lacZ transcriptional fusion constructs. Together, our results highlight the complex transcriptional regulation of the lsrACDBFG and lsrRK operons and suggest that multiple promoters and the architecture of the lsrACDBFG-lsrRK intergenic region may control the expression of these operons.


Subject(s)
Aggregatibacter actinomycetemcomitans/genetics , Bacterial Proteins/biosynthesis , Gene Expression Regulation, Bacterial , Integration Host Factors/metabolism , Operon , Artificial Gene Fusion , DNA, Bacterial/metabolism , Electrophoretic Mobility Shift Assay , Gene Deletion , Genes, Reporter , Genetic Complementation Test , Integration Host Factors/genetics , Promoter Regions, Genetic , Protein Binding , Transcription Initiation Site , beta-Galactosidase/analysis , beta-Galactosidase/genetics
7.
Microbiology (Reading) ; 159(Pt 6): 989-1001, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23519160

ABSTRACT

The quorum-sensing Escherichia coli regulators B and C (QseBC) two-component system were previously shown to regulate biofilm growth of the oral pathogen Aggregatibacter actinomycetemcomitans and to be essential for virulence. In this study, we use RT-PCR to show that an open reading frame, ygiW, residing upstream of qseBC and encoding a hypothetical protein is co-expressed with qseBC. In addition, using a series of lacZ transcriptional fusion constructs and 5'-rapid amplification of cDNA Ends (RACE), the promoter that drives expression of the ygiW-qseBC operon and the transcriptional start site was mapped to the 372 bp intergenic region upstream from ygiW. No internal promoters drive qseBC expression independently from ygiW. However, qseBC expression is attenuated by approximately ninefold by a putative attenuator stem-loop (ΔG = -77.0 KJ/mol) that resides in the 137 bp intergenic region between ygiW and qseB. The QseB response regulator activates expression of the ygiW-qseBC operon and transcription from the ygiW promoter is drastically reduced in ΔqseB and ΔqseBC mutants of A. actinomycetemcomitans. In addition, transcriptional activity of the ygiW promoter is significantly reduced in a mutant expressing an in-frame deletion of qseC that lacks the sensor domain of QseC, suggesting that a periplasmic signal is required for QseB activation. Finally, a non-polar in-frame deletion in ygiW had little effect on biofilm depth but caused a significant increase in surface coverage relative to wild-type. Complementation of the mutant with a plasmid-borne copy of ygiW reduced surface coverage back to wild-type levels. Interestingly, deletion of the sensor domain of QseC or of the entire qseC open reading frame resulted in significant reductions in biofilm depth, biomass and surface coverage, indicating that the sensor domain is essential for optimal biofilm formation by A. actinomycetemcomitans. Thus, although ygiW and qseBC are co-expressed, they regulate biofilm growth by distinct mechanisms.


Subject(s)
Bacterial Proteins/biosynthesis , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Pasteurellaceae/genetics , Bacterial Proteins/genetics , Gene Deletion , Gene Expression Profiling , Genetic Complementation Test , Operon , Pasteurellaceae/physiology , Promoter Regions, Genetic , Real-Time Polymerase Chain Reaction , Transcription Initiation Site
8.
Plasmid ; 69(3): 211-22, 2013 May.
Article in English | MEDLINE | ID: mdl-23353051

ABSTRACT

To elucidate the putative function of a gene, effective tools are required for genetic characterization that facilitate its inactivation, deletion or modification on the bacterial chromosome. In the present study, the nucleotide sequence of the Escherichia coli/Aggregatibacter actinomycetemcomitans shuttle vector pYGK was determined, allowing us to redesign and construct a new shuttle cloning vector, pJT4, and promoterless lacZ transcriptional/translational fusion plasmids, pJT3 and pJT5. Plasmids pJT4 and pJT5 contain the origin of replication necessary to maintain shuttle vector replication. In addition, a new suicide vector, pJT1, was constructed for the generation of scarless and markerless deletion mutations of genes in the oral pathogen A. actinomycetemcomitans. Plasmid pJT1 is a pUC-based suicide vector that is counter-selectable for sucrose sensitivity. This vector does not leave antibiotic markers or scars on the chromosome after gene deletion and thus provides the option to combine several mutations in the same genetic background. The effectiveness of pJT1 was demonstrated by the construction of A. actinomycetemcomitans isogenic qseB single deletion (ΔqseB) mutant and lsrRK double deletion mutants (ΔlsrRK). These new vectors may offer alternatives for genetic studies in A. actinomycetemcomitans and other members of the HACEK (Haemophilus spp., A. actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella kingae) group of Gram-negative bacteria.


Subject(s)
Aggregatibacter actinomycetemcomitans/genetics , DNA Replication , Genetic Vectors/genetics , Lac Operon , Plasmids/genetics , Bacterial Proteins/genetics , Base Sequence , Cloning, Molecular , Genes, Reporter , Genes, Transgenic, Suicide , Physical Chromosome Mapping , Promoter Regions, Genetic , Replication Origin , Sequence Deletion , Transcription, Genetic
9.
J Bacteriol ; 195(1): 56-65, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23104800

ABSTRACT

Autoinducer-2 (AI-2) is required for biofilm formation and virulence of the oral pathogen Aggregatibacter actinomycetemcomitans, and we previously showed that lsrB codes for a receptor for AI-2. The lsrB gene is expressed as part of the lsrACDBFG operon, which is divergently transcribed from an adjacent lsrRK operon. In Escherichia coli, lsrRK encodes a repressor and AI-2 kinase that function to regulate lsrACDBFG. To determine if lsrRK controls lsrACDBFG expression and influences biofilm growth of A. actinomycetemcomitans, we first defined the promoters for each operon. Transcriptional reporter plasmids containing the 255-bp lsrACDBFG-lsrRK intergenic region (IGR) fused to lacZ showed that essential elements of lsrR promoter reside 89 to 255 bp upstream from the lsrR start codon. Two inverted repeat sequences that represent potential binding sites for LsrR and two sequences resembling the consensus cyclic AMP receptor protein (CRP) binding site were identified in this region. Using electrophoretic mobility shift assay (EMSA), purified LsrR and CRP proteins were shown to bind probes containing these sequences. Surprisingly, the 255-bp IGR did not contain the lsrA promoter. Instead, a fragment encompassing nucleotides +1 to +159 of lsrA together with the 255-bp IGR was required to promote lsrA transcription. This suggests that a region within the lsrA coding sequence influences transcription, or alternatively that the start codon of A. actinomycetemcomitans lsrA has been incorrectly annotated. Transformation of ΔlsrR, ΔlsrK, ΔlsrRK, and Δcrp deletion mutants with lacZ reporters containing the lsrA or lsrR promoter showed that LsrR negatively regulates and CRP positively regulates both lsrACDBFG and lsrRK. However, in contrast to what occurs in E. coli, deletion of lsrK had no effect on the transcriptional activity of the lsrA or lsrR promoters, suggesting that another kinase may be capable of phosphorylating AI-2 in A. actinomycetemcomitans. Finally, biofilm formation of the ΔlsrR, ΔlsrRK, and Δcrp mutants was significantly reduced relative to that of the wild type, indicating that proper regulation of the lsr locus is required for optimal biofilm growth by A. actinomycetemcomitans.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial/physiology , Operon/physiology , Pasteurellaceae/physiology , Bacterial Proteins/genetics , DNA, Bacterial/genetics , DNA, Intergenic , Electrophoretic Mobility Shift Assay , Gene Deletion , Gene Expression Regulation, Bacterial/drug effects , Glucose/pharmacology , Operon/genetics , Pasteurellaceae/classification , Pasteurellaceae/genetics , Plasmids , Protein Binding , Transcription, Genetic
10.
Vaccine ; 29(2): 274-82, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-20979987

ABSTRACT

We evaluated the ability of Yersinia pestis antigens HmuR, Psn and modified forms of LcrV delivered by live attenuated Salmonella strains to stimulate a protective immune response against subcutaneous or intranasal challenge with Y. pestis CO92. LcrV196 is a previously described truncated protein that includes aa 131-326 of LcrV and LcrV5214 has been modified to replace five key amino acids required for interaction with the TLR2 receptor. Psn is the outer membrane receptor for the siderophore, yersiniabactin, and the bacteriocin, pesticin. Mice immunized with Salmonella synthesizing Psn, LcrV196 or LcrV5214 developed serum IgG responses to the respective Yersinia antigen and were protected against pneumonic challenge with Y. pestis. Immunization with Salmonella synthesizing Psn or LcrV196 was sufficient to afford nearly full protection against bubonic challenge, while immunization with the strain synthesizing LcrV5214 was not protective. Immunization with Salmonella synthesizing HmuR, an outer membrane protein involved in heme acquisition in Y. pestis, was poorly immunogenic and did not elicit a protective response against either challenge route. These findings indicate that both Psn and LcrV196 delivered by Salmonella provide protection against both bubonic and pneumonic plague.


Subject(s)
Bacterial Proteins/immunology , Plague Vaccine/immunology , Plague/prevention & control , Yersinia pestis/immunology , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Proteins/genetics , Disease Models, Animal , Female , Genetic Vectors , Mice , Mice, Inbred BALB C , Plague/immunology , Plague Vaccine/administration & dosage , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Salmonella Vaccines/genetics , Survival Analysis , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Yersinia pestis/genetics
11.
Vaccine ; 28(36): 5810-6, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20600475

ABSTRACT

Yersinia pestis PsaA is an adhesin that is synthesized inside macrophages. Here, we evaluated the immune profile of codon-optimized Y. pestis PsaA synthesized in a live recombinant attenuated Salmonella vaccine (RASV) strain chi9558. Oral immunization of BALB/c mice with chi9558(pYA3705) delivering a secreted form of PsaA, elicited a systemic PsaA-specific immunoglobulin G (IgG) response but offered limited protection against lethal challenge with the intranasally introduced Y. pestis CO92 strain. Our results suggest that appropriate fine-tuning of Y. pestis PsaA delivery by RASV could improve its protective role in curtailing plague colonization and infection.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Immunity, Humoral , Plague Vaccine/immunology , Plague/prevention & control , Animals , Antibodies, Bacterial/blood , Female , Immunity, Mucosal , Immunoglobulin A/immunology , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Salmonella enterica/immunology , Vaccines, Attenuated/immunology , Yersinia pestis/immunology
12.
Infect Immun ; 78(7): 3258-71, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20479086

ABSTRACT

Streptococcus pneumoniae is a leading cause of morbidity and mortality among children worldwide and particularly in developing countries. In this study, we evaluated PsaA, a conserved antigen important for S. pneumoniae adhesion to and invasion into nasopharynx epithelia, for its ability to induce protective immunity against S. pneumoniae challenge when delivered by recombinant attenuated Salmonella vaccine (RASVs) strains. RASVs were engineered to synthesize PsaA peptides of various lengths. Vaccination with an RASV synthesizing full-length PsaA induced high titers of anti-PsaA antibodies in both systemic (IgG in serum) and mucosal (IgA in vaginal washes, nasal washes, and lung homogenates) sites. BALB/c (haplotype H2(d)) or C57BL/6 (haplotype H2(b)) mice vaccinated either orally or intranasally exhibited a significant reduction in colonization of nasopharyngeal tissues after intranasal challenge with S. pneumoniae strains compared to controls, although protection was not observed with all challenge strains. None of the vaccine constructs provided protection against intraperitoneal challenge with S. pneumoniae strain WU2 (serotype 3). Immunization with RASVs synthesizing truncated PsaA generated lower titers of IgA and IgG and did not provide significant protection. Our results showed that RASVs synthesizing full-length PsaA can provide protection against nasal colonization by some S. pneumoniae strains. PsaA may be a useful addition to a multivalent vaccine, providing protection against pneumonia, otitis media, and other diseases caused by S. pneumoniae.


Subject(s)
Adhesins, Bacterial/immunology , Lipoproteins/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Salmonella Vaccines/immunology , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Female , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology
13.
Infect Immun ; 78(6): 2529-43, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20308296

ABSTRACT

A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal DeltaasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/P(cro)) (P(R)), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC P(BAD) c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of beta-lactamase, and cloned into pYA4534 under the control of the P(trc) promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain chi9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Vaccines/immunology , Genetic Vectors , Plague/prevention & control , Pore Forming Cytotoxic Proteins/immunology , Salmonella typhimurium/immunology , Yersinia pestis/immunology , Animals , Antigens, Bacterial/genetics , Bacterial Vaccines/genetics , Female , Mice , Mice, Inbred BALB C , Plasmids , Pore Forming Cytotoxic Proteins/genetics , Salmonella typhimurium/genetics , Survival Analysis , Th1 Cells/immunology , Th2 Cells/immunology , Yersinia pestis/genetics
14.
FEMS Microbiol Lett ; 302(2): 106-13, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20002189

ABSTRACT

Yersinia pestis PsaA is an adhesin important for the establishment of bacterial infection. PsaA synthesis requires the products of the psaEFABC genes. Here, by prediction analysis, we identified a PsaA signal sequence with two signal peptidase (SPase) cleavage sites, type-I and type-II (SPase-I and SPase-II). By Edman degradation and site-directed mutagenesis, the precise site for one of these Spase-I PsaA cleavage sites was located between alanine and serine at positions 31 and 32, respectively. Yersinia pestis psaA expression and the role of the PsaB and PsaC proteins were evaluated in recombinant attenuated Salmonella Typhimurium vaccine strains. PsaA was detected in total extracts as a major 15-kDa (mature) and 18-kDa (unprocessed) protein bands. PsaA synthesis was not altered by a DeltaA31-DeltaS32 double-deletion mutation. In contrast, the synthesis of PsaA (DeltaA31-DeltaS32) in Y. pestis and delivery to the supernatant was decreased. Otherwise, substitution of the amino acid cysteine at position 26 by valine involved in the SPase-II cleavage site did not show any effect on the secretion of PsaA in Salmonella and Yersinia. These results help clarify the secretion pathway of PsaA for the possible development of vaccines against Y. pestis.


Subject(s)
Antigens, Bacterial/biosynthesis , Antigens, Bacterial/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Genetic Vectors , Plague Vaccine/genetics , Salmonella typhimurium/genetics , Amino Acid Sequence , Antigens, Bacterial/immunology , Aspartic Acid Endopeptidases/metabolism , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Humans , Membrane Proteins/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Plague Vaccine/immunology , Protein Sorting Signals/genetics , Sequence Alignment , Sequence Deletion , Serine Endopeptidases/metabolism , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
15.
Vaccine ; 27(39): 5363-70, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19596407

ABSTRACT

The use of live recombinant attenuated Salmonella vaccines (RASV) synthesizing Yersinia proteins is a promising approach for controlling infection by Yersinia species. In this study, we constructed attenuated Salmonella strains which synthesize a truncated form of LcrV, LcrV196 and evaluated the immune response and protective efficacy elicited by these strains in mice against two other major species of Yersinia: Yersinia pseudotuberculosis and Yersinia enterocolitica. Surprisingly, we found that the RASV strain alone was sufficient to afford nearly full protection against challenge with Y. pseudotuberculosis, indicating the likelihood that Salmonella produces immunogenic cross-protective antigens. In contrast, lcrV196 expression was required for protection against challenge with Y. enterocolitica strain 8081, but was not sufficient to achieve significant protection against challenge with Y. enterocolitica strain WA, which expressed a divergent form of lcrV. Nevertheless, we are encouraged by these findings to continue pursuing our long-term goal of developing a single vaccine to protect against all three human pathogenic species of Yersinia.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Vaccines/immunology , Pore Forming Cytotoxic Proteins/immunology , Salmonella typhimurium/immunology , Yersinia Infections/prevention & control , Administration, Oral , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Cross Reactions , DNA, Bacterial/genetics , Female , Mice , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology , Yersinia Infections/immunology , Yersinia enterocolitica/immunology , Yersinia pestis/immunology , Yersinia pseudotuberculosis/immunology
16.
Mol Biochem Parasitol ; 152(1): 80-9, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17204341

ABSTRACT

The ability of Giardia lamblia to undergo two distinct differentiations in response to physiologic stimuli is central to its pathogenesis. The giardial cytoskeleton changes drastically during encystation and excystation. However, the signal transduction pathways mediating these transformations are poorly understood. We tested the hypothesis that PP2A, a highly conserved serine/threonine protein phosphatase, might be important in giardial differentiation. We found that in vegetatively growing trophozoites, gPP2A-C protein localizes to basal bodies/centrosomes, and to cytoskeletal structures unique to Giardia: the ventral disk, and the dense rods of the anterior, posterior-lateral, and caudal flagella. During encystation, gPP2A-C protein disappears from only the anterior flagellar dense rods. During excystation, gPP2A-C localizes to the cyst wall in excysting cysts but is not found in the wall of cysts with emerging excyzoites. Transcriptome and immunoblot analyses indicated that gPP2A-C mRNA and protein are upregulated in mature cysts and during the early stage of excystation that models passage through the host stomach. Stable expression of gPP2A-C antisense RNA did not affect vegetative growth, but strongly inhibited the formation of encystation secretory vesicles (ESV) and water-resistant cysts. Moreover, the few cysts that formed were highly defective in excystation. Thus, gPP2A-C localizes to universal cytoskeletal structures and to structures unique to Giardia. It is also important for encystation and excystation, crucial giardial transformations that entail entry into and exit from dormancy.


Subject(s)
Gene Expression Regulation, Developmental , Giardia lamblia/enzymology , Giardia lamblia/growth & development , Phosphoprotein Phosphatases/metabolism , Adaptation, Physiological , Amino Acid Sequence , Animals , Blotting, Western , Centrosome/chemistry , Cytoskeleton/chemistry , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Flagella/chemistry , Giardia lamblia/genetics , Immunohistochemistry , Microscopy, Fluorescence , Molecular Sequence Data , Morphogenesis/genetics , Phosphoprotein Phosphatases/biosynthesis , Phosphoprotein Phosphatases/genetics , Protein Phosphatase 2 , Protozoan Proteins/analysis , Protozoan Proteins/genetics , RNA, Protozoan/analysis , RNA, Protozoan/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...