Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 13(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38668261

ABSTRACT

In pathogen recognition, the nucleotide-binding domain (NBD) and leucine rich repeat receptors (NLRs) have noteworthy functions in the activation of the innate immune response. These receptors respond to several viral infections, among them NOD2, a very dynamic NLR, whose role in dengue virus (DENV) infection remains unclear. This research aimed to determine the role of human NOD2 in THP-1 macrophage-like cells during DENV-2 infection. NOD2 levels in DENV-2 infected THP-1 macrophage-like cells was evaluated by RT-PCR and Western blot, and an increase was observed at both mRNA and protein levels. We observed using confocal microscopy and co-immunoprecipitation assays that NOD2 interacts with the effector protein MAVS (mitochondrial antiviral signaling protein), an adaptor protein promoting antiviral activity, this occurring mainly at 12 h into the infection. After silencing NOD2, we detected increased viral loads of DENV-2 and lower levels of IFN-α in supernatants from THP-1 macrophage-like cells with NOD2 knock-down and further infected with DENV-2, compared with mock-control or cells transfected with Scramble-siRNA. Thus, NOD2 is activated in response to DENV-2 in THP-1 macrophage-like cells and participates in IFN-α production, in addition to limiting virus replication at the examined time points.

2.
BioDrugs ; 36(3): 325-336, 2022 May.
Article in English | MEDLINE | ID: mdl-35608749

ABSTRACT

Dengue is one of the most prevalent mosquito-borne diseases in the world, affecting an estimated 390 million people each year, according to models. For the last two decades, efforts to develop safe and effective vaccines to prevent dengue virus (DENV) infections have faced several challenges, mostly related to the complexity of conducting long-term studies to evaluate vaccine efficacy and safety to rule out the risk of vaccine-induced DHS/DSS, particularly in children. At least seven DENV vaccines have undergone different phases of clinical trials; however, only three of them (Dengvaxia®, TV003, and TAK-003) have showed promising results, and are addressed in detail in this review in terms of their molecular design, efficacy, and immunogenicity. Safety-related challenges during DENV vaccine development are also discussed.


Subject(s)
Dengue Vaccines , Dengue , Animals , Antibodies, Viral , Child , Dengue/prevention & control , Dengue Vaccines/therapeutic use , Humans
3.
Genome Announc ; 5(12)2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28336600

ABSTRACT

Zika virus (ZIKV) is an emerging arthropod-borne flavivirus associated with severe congenital malformations and neurological complications. Although the ZIKV genome is well characterized, there is limited information regarding changes after cell isolation and culture adaptation. We isolated, and passaged in Vero cells, ZIKV from the serum of a symptomatic male patient and compared the viral genomes before and after culture. Single nucleotide polymorphisms were characteristic among serum-circulating genomes, while such diversity decreased after cell culture.

4.
Viruses ; 7(9): 5145-54, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26404354

ABSTRACT

Tight junctions (TJs) are highly specialized membrane domains involved in many important cellular processes such as the regulation of the passage of ions and macromolecules across the paracellular space and the establishment of cell polarity in epithelial cells. Over the past few years there has been increasing evidence that different components of the TJs can be hijacked by viruses in order to complete their infectious cycle. Viruses from at least nine different families of DNA and RNA viruses have been reported to use TJ proteins in their benefit. For example, TJ proteins such as JAM-A or some members of the claudin family of proteins are used by members of the Reoviridae family and hepatitis C virus as receptors or co-receptors during their entry into their host cells. Reovirus, in addition, takes advantage of the TJ protein Junction Adhesion Molecule-A (JAM-A) to achieve its hematogenous dissemination. Some other viruses are capable of regulating the expression or the localization of TJ proteins to induce cell transformation or to improve the efficiency of their exit process. This review encompasses the importance of TJs for viral entry, replication, dissemination, and egress, and makes a clear statement of the importance of studying these proteins to gain a better understanding of the replication strategies used by viruses that infect epithelial and/or endothelial cells.


Subject(s)
DNA Viruses/physiology , RNA Viruses/physiology , Tight Junctions/virology , Virus Internalization , Virus Release , Virus Replication , Animals , Humans , Receptors, Virus/metabolism , Tight Junction Proteins/metabolism
5.
Virology ; 475: 172-8, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25481868

ABSTRACT

Several molecules have been identified as receptors or coreceptors for rotavirus infection, including glycans, integrins, and hsc70. In this work we report that the tight junction proteins JAM-A, occludin, and ZO-1 play an important role during rotavirus entry into MA104 cells. JAM-A was found to function as coreceptor for rotavirus strains RRV, Wa, and UK, but not for rotavirus YM. Reassortant viruses derived from rotaviruses RRV and YM showed that the virus spike protein VP4 determines the use of JAM-A as coreceptor.


Subject(s)
Receptors, Cell Surface/metabolism , Rotavirus/physiology , Tight Junction Proteins/metabolism , Virus Internalization , Animals , Cell Line , Humans , Macaca mulatta , Mice , RNA Interference , RNA, Small Interfering , Receptors, Cell Surface/genetics , Tight Junction Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...