Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(4-1): 044102, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978615

ABSTRACT

We study the probability distribution function of the long-time values of observables being time-evolved by Hamiltonians modeling clean and disordered one-dimensional chains of many spin-1/2 particles. In particular, we analyze the return probability and its version for a completely extended initial state, the so-called spectral form factor. We complement our analysis with the spin autocorrelation and connected spin-spin correlation functions, both of interest in experiments with quantum simulators. We show that the distribution function has a universal shape provided the central limit theorem holds. Explicitly, the shape is exponential for the return probability and spectral form factor, meanwhile it is Gaussian for the few-body observables. We also discuss implications over the so-called many-body localization. Remarkably, our approach requires only a single sample of the dynamics and small system sizes, which could be quite advantageous when dealing specially with disordered systems.

2.
Entropy (Basel) ; 25(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36832572

ABSTRACT

Survival probability measures the probability that a system taken out of equilibrium has not yet transitioned from its initial state. Inspired by the generalized entropies used to analyze nonergodic states, we introduce a generalized version of the survival probability and discuss how it can assist in studies of the structure of eigenstates and ergodicity.

3.
Phys Rev E ; 102(6-1): 062126, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33465957

ABSTRACT

In a disordered system, a quantity is self-averaging when the ratio between its variance for disorder realizations and the square of its mean decreases as the system size increases. Here, we consider a chaotic disordered many-body quantum system and search for a relationship between self-averaging behavior and the properties of the distributions over disorder realizations of various quantities and at different timescales. An exponential distribution, as found for the survival probability at long times, explains its lack of self-averaging, since the mean and the dispersion are equal. Gaussian distributions, however, are obtained for both self-averaging and non-self-averaging quantities. Our studies show also that one can make conclusions about the self-averaging behavior of one quantity based on the distribution of another related quantity. This strategy allows for semianalytical results, and thus circumvents the limitations of numerical scaling analysis, which are restricted to few system sizes.

4.
Phys Rev E ; 100(2-1): 022142, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574697

ABSTRACT

This work shows that dynamical features typical of full random matrices can be observed also in the simple finite one-dimensional (1D) noninteracting Anderson model with nearest-neighbor couplings. In the thermodynamic limit, all eigenstates of this model are exponentially localized in configuration space for any infinitesimal on-site disorder strength W. But this is not the case when the model is finite and the localization length is larger than the system size L, which is a picture that can be experimentally investigated. We analyze the degree of energy-level repulsion, the structure of the eigenstates, and the time evolution of the finite 1D Anderson model as a function of the parameter ξ∝(W^{2}L)^{-1}. As ξ increases, all energy-level statistics typical of random matrix theory are observed. The statistics are reflected in the corresponding eigenstates and also in the dynamics. We show that the probability in time to find a particle initially placed on the first site of an open chain decays as fast as in full random matrices and much faster than when the particle is initially placed far from the edges. We also see that at long times, the presence of energy-level repulsion manifests in the form of the correlation hole. In addition, our results demonstrate that the hole is not exclusive to random matrix statistics, but emerges also for W=0, when it is in fact deeper.

SELECTION OF CITATIONS
SEARCH DETAIL
...