Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834188

ABSTRACT

Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.


Subject(s)
Bacteria , Luminescent Proteins/metabolism , Bacteria/metabolism
2.
Micromachines (Basel) ; 14(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37893319

ABSTRACT

Copper nanoparticles (CuNPs) can be synthesized by green methods using plant extracts. These methods are more environmentally friendly and offer improved properties of the synthesized NPs in terms of biocompatibility and functional capabilities. Traditional medicine has a rich history of utilization of herbs for millennia, offering a viable alternative or complementary option to conventional pharmacological medications. Plants of traditional herbal use or those with medicinal properties are candidates to be used to obtain NPs due to their high and complex content of biocompounds with different redox capacities that provide a dynamic reaction environment for NP synthesis. Other synthesis conditions, such as salt precursor concentration, temperature, time synthesis, and pH, have a significant effect on the characteristics of the NPs. This paper will review the properties of some compounds from medicinal plants, plant extract obtention methods alternatives, characteristics of plant extracts, and how they relate to the NP synthesis process. Additionally, the document includes diverse applications associated with CuNPs, starting from antibacterial properties to potential applications in metabolic disease treatment, vegetable tissue culture, therapy, and cardioprotective effect, among others.

3.
Biosensors (Basel) ; 12(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36354471

ABSTRACT

Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.


Subject(s)
Biosensing Techniques , Nanoparticles , Biocompatible Materials , DNA , Carbohydrates
4.
J Am Soc Mass Spectrom ; 31(6): 1302-1312, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32379441

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease characterized by severe reproductive failure in sows, acute respiratory disorders in growing pigs, and high mortality in piglets. The causative agent of this syndrome is the PRRS virus (PRRSV), an RNA virus belonging to the Arteriviridae family. To date, several quantitative approaches of proteomics have been applied to analyze the gene expression profiles during PRRSV infection in PAMs and MARC-145 cells, and few proteins have been consistent among independent studies, probably due to the differences in the levels of virulence of different PRRSV strains used and/or due to analytical conditions. In this study, total proteins isolated from noninfected and infected MARC-145 cells with a Mexican PRRSV strain were relatively quantified using label-free based DIA approach in combination with ion-mobility separation. As a result, 1456 quantified proteins were found to be shared between the control and infected samples. Afterward, these proteins were filtered, and 699 of them were considered without change. Also, 17 proteins were up-regulated and 19 proteins were down-regulated during the PRSSV infection. Bioinformatic analysis revealed that many of the differentially expressed proteins are involved in processes like antigen processing, presentation of antigens, response to viruses, response to IFNs, and innate immune response, among others. The present work is the first one which provides a detailed proteomic analysis through label-free based DIA approach in MARC-145 cells during the infection with a Mexican PRRSV strain.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Proteome , Proteomics/methods , Animals , Cell Line , Chlorocebus aethiops , Host-Pathogen Interactions , Mass Spectrometry/methods , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus , Protein Interaction Maps , Proteome/analysis , Proteome/chemistry , Proteome/metabolism , Swine
5.
J Biochem ; 162(2): 123-135, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28169401

ABSTRACT

Giardia duodenalis is a flagellated binucleated protozoan that colonizes the small intestine in mammals, causing giardiasis, acute or chronic diarrhea. DNA double strand break either endogenously or exogenously generated is a major insult to DNA and its repair by homologous recombination (HR) is crucial for genomic stability. During HR, Rad52 plays key roles in the loading of the Rad51 recombinase, and the annealing of the second double-strand break end to the displaced strand of the D-loop structure. Among the functions found in vitro in yeast and human Rad52 protein are: ssDNA or dsDNA binding activity, ability to anneal bare or RPA coated-ssDNA, as well as multimeric ring formation. In this work, we searched for conserved domains in a putative Rad52 protein from G. duodenalis (GdRad52). Its coding sequence was cloned, expressed and purified to study its biochemical properties. rGdRad52 binds to dsDNA and ssDNA, with greater affinity for the latter. Likewise, rGdRad52 promotes annealing of DNA uncoated and coated with GdRPA1. rGdRad52 interacts with GdDMC1B and with GdRPA1 protein as shown in far western blotting assay. Additionally, rGdRad52 formed multimeric rings as observed by electronic microscopy. Finally, GdRad52 is over expressed in response upon DNA damage inflicted on trophozoites.


Subject(s)
DNA/metabolism , Giardia lamblia/chemistry , Rad52 DNA Repair and Recombination Protein/metabolism , Computational Biology , DNA/chemistry , DNA Damage , Giardia lamblia/cytology , Giardia lamblia/metabolism , Microscopy, Electron , Models, Molecular , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/isolation & purification
6.
Data Brief ; 9: 236-44, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27660811

ABSTRACT

Giardia duodenalis is a worldwide protozoa known causing diarrhea in all vertebrates, humans among these. Homologous recombination is a mechanism that provides genomic stability. Two putative recombinases were identified in G. duodenalis genome: GdDMC1A and GdDMC1B. In this article, we describe the identification of conserved domains in GdDMC1A and GdDMC1B, such as: DNA binding domains (Helix-turn-helix motif, loops 1 and 2) and an ATPcap and Walker A and B motifs associated with ATP binding and hydrolysis, phylogenetic analyses among assemblages and three-dimensional structure modeling of these recombinases using bioinformatics tools. Also, experimental data is described about LD50 determination for ionizing radiation in trophozoites of G. duodenalis. Additionally, as recombinases, GdDMC1A and GdDMC1B were used to rescue a defective Saccharomyces cerevisiae Δ rad51 strain under genotoxic conditions and data is described. The data described here are related to the research article entitled "Characterization of recombinase DMC1B and its functional role as Rad51 in DNA damage repair in Giardia duodenalis trophozoites" (Torres-Huerta et al.,) [1].

7.
Biochimie ; 127: 173-86, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27234615

ABSTRACT

Homologous recombination (HR) is a highly conserved pathway for the repair of chromosomes that harbor DNA double-stranded breaks (DSBs). The recombinase RAD51 plays a key role by catalyzing the pairing of homologous DNA molecules and the exchange of information between them. Two putative DMC1 homologs (DMC1A and DMC1B) have been identified in Giardia duodenalis. In terms of sequences, GdDMC1A and GdDMC1B bear all of the characteristic recombinase domains: DNA binding domains (helix-turn-helix motif, loops 1 and 2), an ATPcap and Walker A and B motifs associated with ATP binding and hydrolysis. Because GdDMC1B is expressed at the trophozoite stage and GdDMC1A is expressed in the cyst stage, we cloned the giardial dmc1B gene and expressed and purified its protein to determine its activities, including DNA binding, ATP hydrolysis, and DNA strand exchange. Our results revealed that it possessed these activities, and they were modulated by divalent metal ions in different manners. GdDMC1B expression at the protein and transcript levels, as well as its subcellular localization in trophozoites upon DNA damage, was assessed. We found a significant increase in GdDMC1B transcript and protein levels after ionizing radiation treatment. Additionally, GdDMC1B protein was mostly located in the nucleus of trophozoites after DNA damage. These results indicate that GdDMC1B is the recombinase responsible for DSBs repair in the trophozoite; therefore, a functional Rad51 role is proposed for GdDMC1B.


Subject(s)
DNA Repair , Giardia lamblia/enzymology , Giardia lamblia/genetics , Rad51 Recombinase/metabolism , Trophozoites/enzymology , Amino Acid Sequence , DNA Damage , DNA, Single-Stranded/metabolism , Gene Expression Regulation, Enzymologic , Models, Molecular , Nucleoproteins/metabolism , Protein Domains , Rad51 Recombinase/chemistry , Rad51 Recombinase/genetics , Trophozoites/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...