Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(19): 8908-8918, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38684934

ABSTRACT

This work is devoted to evaluating the relationship between the oxygen content and catalytic activity in the CO oxidation process of the 6H-type BaFeO3-δ system. Strong evidence is provided about the improvement of catalytic performance with increasing Fe average oxidation state, thus suggesting the involvement of lattice oxygen in the catalytic process. The compositional and structural changes taking place in both the anionic and cationic sublattices of the catalysts during redox cycles have been determined by temperature-resolved neutron diffraction. The obtained results evidence a structural transition from hexagonal (P63/mmc) to orthorhombic (Cmcm) symmetry. This transition is linked to octahedra distortion when the Fe3+ concentration exceeds 40% (δ values higher than 0.2). The topotactical character of the redox process is maintained in the δ range 0 < δ < 0.4. This suggests that the cationic framework is only subjected to slight structural modifications during the oxygen exchange process occurring during the catalytic cycle.

2.
Inorg Chem ; 56(19): 11753-11761, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28898062

ABSTRACT

The elucidation of the reaction mechanisms involving redox processes in functional transition-metal oxides, which usually start in areas of very few nanometers in size, is yet a challenge to be satisfactorily achieved. Atomically resolved HAADF and EELS have provided both chemical and structural information at the nanoscale, which reveal the preservation of short-range cationic order in areas of 2-3 nm length as the driving force behind the reversibility of the Ca2Mn3O8-Ca2Mn3O5 redox process. Oxygen evolution is accommodated by cationic diffusion along the Ca and Mn layers of the cation-deficient Ca2Mn3O8 delafossite related structure, whereas Mn remains octahedrally coordinated.

3.
J Mater Chem B ; 5(15): 2714-2725, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-32264157

ABSTRACT

The use of nanoparticles with the ability to transport drugs in a selective and controllable manner directly to diseased tissues and cells has improved the therapeutic arsenal for addressing unmet clinical situations. In recent years, a vast number of nanocarriers with inorganic, organic, hybrid and even biological nature have been developed especially for their application in the oncology field. The exponential growth in the field of nanomedicine would not have been possible without the also-rapid expansion of electron microscopy techniques, which allow a more precise observation of nanometric objects. The use of these techniques provides a better understanding of the key parameters which rule the nanoparticles' synthesis and behavior. In this review, the recent advances made in the application of inorganic nanoparticles to clinical uses and the role which electron microscopy has played are presented.

4.
Nat Commun ; 7: 11227, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27079668

ABSTRACT

Dimensionality is known to play an important role in many compounds for which ultrathin layers can behave very differently from the bulk. This is especially true for the paramagnetic metal LaNiO3, which can become insulating and magnetic when only a few monolayers thick. We show here that an induced antiferromagnetic order can be stabilized in the [111] direction by interfacial coupling to the insulating ferromagnet LaMnO3, and used to generate interlayer magnetic coupling of a nature that depends on the exact number of LaNiO3 monolayers. For 7-monolayer-thick LaNiO3/LaMnO3 superlattices, negative and positive exchange bias, as well as antiferromagnetic interlayer coupling are observed in different temperature windows. All three behaviours are explained based on the emergence of a (»,»,»)-wavevector antiferromagnetic structure in LaNiO3 and the presence of interface asymmetry with LaMnO3. This dimensionality-induced magnetic order can be used to tailor a broad range of magnetic properties in well-designed superlattice-based devices.

5.
Nano Lett ; 15(11): 7355-61, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26484628

ABSTRACT

The functional properties of oxide heterostructures ultimately rely on how the electronic and structural mismatches occurring at interfaces are accommodated by the chosen materials combination. We discuss here LaMnO3/LaNiO3 heterostructures, which display an intrinsic interface structural asymmetry depending on the growth sequence. Using a variety of synchrotron-based techniques, we show that the degree of intermixing at the monolayer scale allows interface-driven properties such as charge transfer and the induced magnetic moment in the nickelate layer to be controlled. Further, our results demonstrate that the magnetic state of strained LaMnO3 thin films dramatically depends on interface reconstructions.

6.
Nanotechnology ; 25(43): 435203, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25297338

ABSTRACT

The growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN (planar) layers of similar composition and thickness. Electroluminescence spectra show a very small blue shift with increasing current (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells.

7.
Nano Lett ; 12(6): 2846-51, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22591200

ABSTRACT

The performance of ferroelectric devices is intimately entwined with the structure and dynamics of ferroelectric domains. In ultrathin ferroelectrics, ordered nanodomains arise naturally in response to the presence of a depolarizing field and give rise to highly inhomogeneous polarization and structural profiles. Ferroelectric superlattices offer a unique way of engineering the desired nanodomain structure by modifying the strength of the electrostatic interactions between different ferroelectric layers. Through a combination of X-ray diffraction, transmission electron microscopy, and first-principles calculations, the electrostatic coupling between ferroelectric layers is studied, revealing the existence of interfacial layers of reduced tetragonality attributed to inhomogeneous strain and polarization profiles associated with the domain structure.


Subject(s)
Magnetic Fields , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Static Electricity , Computer Simulation , Electric Conductivity , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...