Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 21(10): 256, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26369916

ABSTRACT

The geometric parameters, local and global chemical reactivity parameters (such as the ionization potential, electron affinity, electronegativity, hardness, softness, chemical potential, and electrophilicity index), as well as the energy levels (HOMO/LUMO) and HOMO-LUMO energy gaps have been determined for the principal carotenoids in higher plants. DFT calculations performed using the B3LYP functional in combination with the 6-31G(d,p) (for geometric parameters) and 6-31 + G(d,p) (for energy parameters) basis sets were carried out to study these structures. The HOMO-LUMO energy gaps obtained with the TPSSh functional were compared with the corresponding energy gaps obtained with B3LYP (when both functionals were used with the 6-31 + G(d,p) basis set). Upon analyzing all of the calculated parameters of the studied molecules, both carotenes were found to be the most reactive, followed by ß-cryptoxanthin, zeaxanthin, lutein, violaxanthin, and finally neoxanthin, the least reactive molecule. The results reveal that all of the carotenoids show very high coplanarity in the photochemically active region, resulting in small HOMO-LUMO energy gaps. The calculated local and global chemical reactivity parameters indicate that all of the studied molecules may be classified as soft, as they are good electron donors/acceptors, making these molecules good candidates for use in artificial photosynthetic systems.


Subject(s)
Models, Theoretical , Pigments, Biological/chemistry , Plants/chemistry , Models, Chemical , Molecular Structure , Photosynthesis , Pigments, Biological/metabolism , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...