Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Neonatology ; : 1-7, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39053436

ABSTRACT

INTRODUCTION: Preterm newborns struggle with maintaining an adequate respiratory pattern; early caffeine administration is suggested to stimulate respiration and reduce bronchopulmonary dysplasia, however, its consequences on the immature cerebellum remains unknown. This study aimed to assess the impact of early caffeine administration, at standard and high doses, accompanied by supplemental oxygen on cerebellar development in an experimental model. METHODS: Five groups of Wistar pups were formed (n = 8 offspring/group): (a) negative control: no intervention; (b) placebo: pups remaining from birth until the 7th day of life (DOL) exposed to fractional inspired oxygen (FiO2) 45%, resembling preterm infant condition and as a placebo, 0.2 mL oral 5% dextrose, from the first DOL until the 14th DOL; (c) caffeine group: oral caffeine, 1st DOL 20 mg/kg, and from 2nd to 14th DOL, 5 mg/kg (standard dose); (d) caffeine at the standard dose, plus O2: during the first 7 DOLs (FiO2: 45%); (e) caffeine: 40 mg/kg in the first DOL, 10 mg/kg the next 14 DOLs, plus O2 in the first 7 DOLs (FiO2: 45%). Subjects were sacrificed on their 15th DOL; measurements were taken from the cerebellum, specifically the external granular layer (EGL) and molecular layer (ML), with quantification of cell migration. RESULTS: Caffeine administration in pups resulted in a delay in cerebellum development based on persistent transitional EGL cells; this finding was exacerbated in groups exposed to caffeine plus O2, as evident from the thicker EGL. The negative control group showed near-complete cell migration with a thicker ML and a significantly smaller EGL. CONCLUSIONS: Early caffeine administration in newborn rats disrupts cerebellar cortex cell processes and connectivity pathways, with exacerbated effects in groups receiving caffeine plus O2.

2.
Brain Sci ; 13(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37891841

ABSTRACT

Frontotemporal lobar degeneration (FTLD) belongs to a heterogeneous group of highly complex neurodegenerative diseases and represents the second cause of presenile dementia in individuals under 65. Frontotemporal-TDP is a subgroup of frontotemporal dementia characterized by the aggregation of abnormal protein deposits, predominantly transactive response DNA-binding protein 43 (TDP-43), in the frontal and temporal brain regions. These deposits lead to progressive degeneration of neurons resulting in cognitive and behavioral impairments. Limbic age-related encephalopathy (LATE) pertains to age-related cognitive decline primarily affecting the limbic system, which is crucial for memory, emotions, and learning. However, distinct, emerging research suggests a potential overlap in pathogenic processes, with some cases of limbic encephalopathy displaying TDP-43 pathology. Genetic factors play a pivotal role in both disorders. Mutations in various genes, such as progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72), have been identified as causative in frontotemporal-TDP. Similarly, specific genetic variants have been associated with an increased risk of developing LATE. Understanding these genetic links provides crucial insights into disease mechanisms and the potential for targeted therapies.

3.
World J Clin Cases ; 11(24): 5628-5642, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37727721

ABSTRACT

Alzheimer's disease (AD) is a progressive and neurodegenerative illness which results in alterations in cognitive development. It is characterized by loss/dysfunction of cholinergic neurons, and formation of amyloid plaques, and formation of neurofibrillary tangles, among other changes, due to hyperphosphorylation of tau-protein. Exposure to pesticides in humans occurs frequently due to contact with contaminated food, water, or particles. Organochlorines, organophosphates, carbamates, pyrethroids and neonicotinoids are associated with the most diagnosed incidents of severe cognitive impairment. The aim of this study was to determine the effects of these pesticides on the phosphorylation of tau protein, and its cognitive implications in the development of AD. It was found that exposure to pesticides increased the phosphorylation of tau protein at sites Ser198, Ser199, Ser202, Thr205, Ser396 and Ser404. Contact with these chemicals altered the enzymatic activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta, and protein phosphatase-2A. Moreover, it altered the expression of the microtubule associated protein tau gene, and changed levels of intracellular calcium. These changes affected tau protein phosphorylation and neuroinflammation, and also increased oxidative stress. In addition, the exposed subjects had poor level of performance in tests that involved evaluation of novelty, as test on verbal, non-verbal, spatial memory, attention, and problem-solving skills.

4.
Genes (Basel) ; 14(7)2023 06 23.
Article in English | MEDLINE | ID: mdl-37510224

ABSTRACT

Demyelinating diseases alter myelin or the coating surrounding most nerve fibers in the central and peripheral nervous systems. The grouping of human central nervous system demyelinating disorders today includes multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) as distinct disease categories. Each disease is caused by a complex combination of genetic and environmental variables, many involving an autoimmune response. Even though these conditions are fundamentally similar, research into genetic factors, their unique clinical manifestations, and lesion pathology has helped with differential diagnosis and disease pathogenesis knowledge. This review aims to synthesize the genetic approaches that explain the differential susceptibility between these diseases, explore the overlapping clinical features, and pathological findings, discuss existing and emerging hypotheses on the etiology of demyelination, and assess recent pathogenicity studies and their implications for human demyelination. This review presents critical information from previous studies on the disease, which asks several questions to understand the gaps in research in this field.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Humans , Multiple Sclerosis/pathology , Neuromyelitis Optica/genetics , Neuromyelitis Optica/pathology , Central Nervous System/pathology , Myelin Sheath , Diagnosis, Differential
5.
Molecules ; 27(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431847

ABSTRACT

Melatonin, N-acetyl-5-hydroxytryptamine, is a hormone that synchronizes the internal environment with the photoperiod. It is synthesized in the pineal gland and greatly depends on the endogenous circadian clock located in the suprachiasmatic nucleus and the retina's exposure to different light intensities. Among its most studied functions are the regulation of the waking-sleep rhythm and body temperature. Furthermore, melatonin has pleiotropic actions, which affect, for instance, the modulation of the immune and the cardiovascular systems, as well as the neuroprotection achieved by scavenging free radicals. Recent research has supported that melatonin contributes to neuronal survival, proliferation, and differentiation, such as dendritogenesis and axogenesis, and its processes are similar to those caused by Nerve Growth Factor, Brain-Derived Neurotrophic Factor, Neurotrophin-3, and Neurotrophin-4/5. Furthermore, this indolamine has apoptotic and anti-inflammatory actions in specific brain regions akin to those exerted by neurotrophic factors. This review presents evidence suggesting melatonin's role as a neurotrophic factor, describes the signaling pathways involved in these processes, and, lastly, highlights the therapeutic implications involved.


Subject(s)
Melatonin , Pineal Gland , Melatonin/pharmacology , Melatonin/metabolism , Pineal Gland/metabolism , Nerve Growth Factors/metabolism , Suprachiasmatic Nucleus/metabolism , Sleep/physiology , Transforming Growth Factor beta/metabolism
6.
Brain Sci ; 12(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36291338

ABSTRACT

The COVID-19 pandemic has proven to be a challenge for healthcare systems, especially in terms of the care of patients with Alzheimer's disease (AD). Age is one of the major risk factors for severe forms of COVID-19, most probably due to the presence of comorbidities and inflammations. It is known that SARS-CoV-2 invades nerve endings and olfactory nerves through the binding of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor. This interaction triggers an inflammatory cascade that results in cognitive impairment. In turn, the isoform of apolipoprotein-E4 (APOE-4ε) in AD is a risk factor for increased neuroinflammation through microglia activation, increased oxidative stress, and neurodegeneration. AD and SARS-CoV-2 are associated with increases in levels of inflammatory markers, as well as increases in levels of APOE-4ε, ACE2 and oxidative stress. Thus, there is a synergistic relationship between AD and SARS-CoV-2. In addition, the social isolation and other health measures resulting from the pandemic have led to a higher level of anxiety and depression among AD patients, a situation which may lead to a decline in cognitive function. Therefore, there is a need to develop strategies for keeping the patient calm but active.

7.
Article in English | MEDLINE | ID: mdl-36141526

ABSTRACT

Pesticides are chemical substances used to control, prevent, or destroy agricultural, domestic, and livestock pests. These compounds produce adverse changes in health, and they have been associated with the development of multiple chronic diseases. This study aimed to present a detailed review of the effect of pesticides on the oral cavity and the oral microbiome. In the oral cavity, pesticides alter and/or modify tissues and the microbiome, thereby triggering imbalance in the ecosystem, generating an inflammatory response, and activating hydrolytic enzymes. In particular, the imbalance in the oral microbiome creates a dysbiosis that modifies the number, composition, and/or functions of the constituent microorganisms and the local response of the host. Pesticide exposure alters epithelial cells, and oral microbiota, and disrupts the homeostasis of the oral environment. The presence of pesticides in the oral cavity predisposes the appearance of pathologies such as caries, periodontal diseases, oral cancer, and odontogenic infections. In this study, we analyzed the effect of organochlorines, organophosphates, pyrethroids, carbamates, bipyridyls, and triazineson oral cavity health and ecosystems.


Subject(s)
Microbiota , Pesticides , Pyrethrins , Carbamates , Mouth , Organophosphates , Pesticides/toxicity
8.
Molecules ; 27(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956837

ABSTRACT

Psychoneuroendocrinoimmunology is the area of study of the intimate relationship between immune, physical, emotional, and psychological aspects. This new way of studying the human body and its diseases was initiated in the last century's first decades. However, the molecules that participate in the communication between the immune, endocrine, and neurological systems are still being discovered. This paper aims to describe the development of psychoneuroendocrinoimmunology, its scopes, limitations in actual medicine, and the extent of melatonin within it.


Subject(s)
Melatonin , Endocrine System , Humans
9.
World J Diabetes ; 13(4): 319-337, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35582669

ABSTRACT

Insulin, a key pleiotropic hormone, regulates metabolism through several signaling pathways in target tissues including skeletal muscle, liver, and brain. In the brain, insulin modulates learning and memory, and impaired insulin signaling is associated with metabolic dysregulation and neurodegenerative diseases. At the receptor level, in aging and Alzheimer's disease (AD) models, the amount of insulin receptors and their functions are decreased. Clinical and animal model studies suggest that memory improvements are due to changes in insulin levels. Furthermore, diabetes mellitus (DM) and insulin resistance are associated with age-related cognitive decline, increased levels of ß-amyloid peptide, phosphorylation of tau protein; oxidative stress, pro-inflammatory cytokine production, and dyslipidemia. Recent evidence shows that deleting brain insulin receptors leads to mild obesity and insulin resistance without influencing brain size and apoptosis development. Conversely, deleting insulin-like growth factor 1 receptor (IGF-1R) affects brain size and development, and contributes to behavior changes. Insulin is synthesized locally in the brain and is released from the neurons. Here, we reviewed proposed pathophysiological hypotheses to explain increased risk of dementia in the presence of DM. Regardless of the exact sequence of events leading to neurodegeneration, there is strong evidence that mitochondrial dysfunction plays a key role in AD and DM. A triple transgenic mouse model of AD showed mitochondrial dysfunction, oxidative stress, and loss of synaptic integrity. These alterations are comparable to those induced in wild-type mice treated with sucrose, which is consistent with the proposal that mitochondrial alterations are associated with DM and contribute to AD development. Alterations in insulin/IGF-1 signaling in DM could lead to mitochondrial dysfunction and low antioxidant capacity of the cell. Thus, insulin/IGF-1 signaling is important for increased neural processing and systemic metabolism, and could be a specific target for therapeutic strategies to decrease alterations associated with age-related cognitive decline.

10.
J Occup Med Toxicol ; 15: 32, 2020.
Article in English | MEDLINE | ID: mdl-33133223

ABSTRACT

BACKGROUND: The region of La Cienega in Jalisco Mexico, is an important agricultural reference for the production of corn, sorghum and wheat, among other grains, so the use of pesticides for pest control is high. However, in this rural area there are no toxicological studies that assess the occupational risk of pesticide use. Therefore, this study is the first to determine the oxidative stress levels markers (GSH, GSSG, carbonyl groups, nitric oxide metabolites and lipid peroxides) as well as alteration of the mitochondrial membrane fluidity caused by occupational exposure to organophosphorus and carbamates in farmers of this region. This occupational risk can increase cellular oxidation, which explains the high prevalence of neurodegenerative diseases and cancer in Cienega settlers to be analyzed in future studies. METHODS: Comparative cross-sectional study was performed using two groups: one not exposed group (n = 93) and another one with occupational exposure (n = 113). The latter group was sub-divided into 4 groups based on duration of use/exposure to pesticides. Oxidative stress levels and membrane fluidity were assessed using spectrophotometric methods. Statistical analyses were performed using SPSS software ver. 19.0 for windows. RESULTS: The most commonly used pesticides were organophosphorus, carbamates, herbicide-type glyphosate and paraquat, with an average occupational exposure time of 35.3 years. There were statistically significant differences in markers of oxidative stress between exposed farmers and not exposed group (p = 0.000). However, in most cases, no significant differences were found in markers of oxidative stress among the 4 exposure sub-groups (p > 0.05). CONCLUSION: In the Cienega region, despite the indiscriminate use of organophosphorus and carbamates, there are no previous studies of levels oxidative stress. The results show increased levels of oxidative stress in occupationally exposed farmers, particularly membrane fluidity levels increased three times in contrast to not exposed group.

11.
Nutr Hosp ; 35(1): 162-168, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29565165

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an inflammatory disease of the central nervous system associated with increased oxidative stress (OS) and mitochondrial alterations. Fish oil consumption has neuroprotective, antioxidant and anti-inflammatory effects in patients with relapsing-recurrent MS (RR-MS). OBJECTIVE: To evaluate changes in the hydrolytic activity of ATP synthase and mitochondrial membrane fluidity in patients with RR-MS who receive fish oil or olive oil as a dietary supplement. METHODS: Clinical, controlled, randomized, double-blind trial. Patients consumed fish oil or olive oil for one year. The hydrolytic activity of ATPase and the fluidity of the mitochondrial membrane of platelets were quantified. RESULTS: In patients with RR-MS, a decrease in the fluidity of mitochondrial membranes and an increase in the hydrolytic activity of ATP synthase was observed in comparison with healthy controls. After 6 or 9 months of treatment with fish oil or olive oil, respectively, these values were normalized. CONCLUSION: The consumption of fish oil and olive oil increases the fluidity of the mitochondrial membranes and decreases the catabolic activity of ATP synthase in platelets from patients with RR-MS.


Subject(s)
Adenosine Triphosphatases/metabolism , Fish Oils/pharmacology , Interferon-beta/therapeutic use , Mitochondria/enzymology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/enzymology , Olive Oil/pharmacology , Adult , Dietary Supplements , Double-Blind Method , Female , Humans , Male , Membrane Fluidity/drug effects , Middle Aged , Mitochondria/drug effects
12.
Nutr. hosp ; 35(1): 162-168, ene.-feb. 2018. tab, graf
Article in English | IBECS | ID: ibc-172104

ABSTRACT

Background: Multiple sclerosis (MS) is an inflammatory disease of the central nervous system associated with increased oxidative stress (OS) and mitochondrial alterations. Fish oil consumption has neuroprotective, antioxidant and anti-inflammatory effects in patients with relapsing-recurrent MS (RR-MS). Objective: To evaluate changes in the hydrolytic activity of ATP synthase and mitochondrial membrane fluidity in patients with RR-MS who receive fish oil or olive oil as a dietary supplement. Methods: Clinical, controlled, randomized, double-blind trial. Patients consumed fish oil or olive oil for one year. The hydrolytic activity of ATPase and the fluidity of the mitochondrial membrane of platelets were quantified. Results: In patients with RR-MS, a decrease in the fluidity of mitochondrial membranes and an increase in the hydrolytic activity of ATP synthase was observed in comparison with healthy controls. After 6 or 9 months of treatment with fish oil or olive oil, respectively, these values were normalized. Conclusion: The consumption of fish oil and olive oil increases the fluidity of the mitochondrial membranes and decreases the catabolic activity of ATP synthase in platelets from patients with RR-MS (AU)


Introducción: la esclerosis multiple (EM) es una enfermedad inflamatoria del sistema nervioso central asociada con estrés oxidativo (EO) y alteraciones mitocondriales. El aceite de pescado tiene efectos neuroprotectores, antioxidantes y antiinflamatorios en pacientes con EM remitente-recurrente (EM-RR). Objetivo: evaluar los cambios en la actividad hidrolítica de la ATPasa y de la fluidez de membrana mitocondrial en pacientes con EM-RR que reciben aceite de pescado o aceite de oliva como suplemento alimenticio. Métodos: ensayo clínico, controlado, aleatorizado, doble ciego. Los pacientes consumieron aceite de pescado o aceite de oliva durante un año. Se cuantifico la actividad hidrolítica de la ATPasa y la fluidez de la membrana mitocondrial de plaquetas. Resultados: en pacientes con EM-RR hay una disminución de la fluidez de las membranas mitocondriales y un incremento de la actividad hidrolítica de la ATPasa en comparación con controles sanos. Después de 6 y 9 meses de tratamiento con aceite de oliva y de aceite de pescado, respectivamente, los valores se normalizaron y se mantuvieron así hasta el fin del estudio. Conclusión: el consumo de aceite de pescado y aceite de oliva incrementan la fluidez de membrana y disminuye la actividad catabólica de la ATP sintasa en pacientes con EM-RR (AU)


Subject(s)
Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Fish Oils/analysis , Olive Oil/analysis , Adenosine Triphosphatases/analysis , Multiple Sclerosis/drug therapy , Membrane Fluidity/physiology , Mitochondria/physiology , Interferon beta-1b/therapeutic use , Infant Nutritional Physiological Phenomena , Mexico
13.
Am J Neurodegener Dis ; 5(2): 145-51, 2016.
Article in English | MEDLINE | ID: mdl-27335704

ABSTRACT

UNLABELLED: Multiple sclerosis (MS) is a chronic, inflammatory and autoimmune disease of the central nervous system. Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are implicated in the induction and progression of MS. Evidence suggests that Omega-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory, antioxidant and neuroprotective effects. The aim of the present work was to evaluate the effect of fish oil on the activity of glutathione reductase (GR), content of reduced and oxidized glutathione, and GSH/GSSG ratio in MS. 50 patients with relapsing-remitting MS were enrolled. The experimental group received orally 4 g/day of fish oil for 12 months. Fish oil supplementation resulted in a significant increase in n-3 fatty acids and a decrease n-6 fatty acids. No differences in glutathione reductase activity, content of reduced and oxidized glutathione, and GSH/GSSG ratio were found. CONCLUSION: Glutathione reductase activity was not significantly different between the groups; however, fish oil supplementation resulted in smaller increase in GR compared with control group, suggesting a possible effect on antioxidant defence mechanisms.

14.
Clin Dev Immunol ; 2013: 708659, 2013.
Article in English | MEDLINE | ID: mdl-24174971

ABSTRACT

Multiple sclerosis (MS) exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB), the recruitment of lymphocytes, microglia, and macrophages to lesion sites, the presence of multiple lesions, generally being more pronounced in the brain stem and spinal cord, the predominantly perivascular location of lesions, the temporal maturation of lesions from inflammation through demyelination, to gliosis and partial remyelination, and the presence of immunoglobulin in the central nervous system and cerebrospinal fluid. Lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Pro-inflammatory cytokines amplify the inflammatory cascade by compromising the BBB, recruiting immune cells from the periphery, and activating resident microglia. inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in the demyelination and free radical-mediated tissue injury in the pathogenesis of MS. The inflammatory environment in demyelinating lesions leads to the generation of oxygen- and nitrogen-free radicals as well as proinflammatory cytokines which contribute to the development and progression of the disease. Inflammation can lead to oxidative stress and vice versa. Thus, oxidative stress and inflammation are involved in a self-perpetuating cycle.


Subject(s)
Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Oxidative Stress , Animals , Antioxidants/metabolism , Cytokines/metabolism , Humans , Lipid Peroxidation , NF-kappa B/metabolism
15.
Arch. latinoam. nutr ; 62(3): 249-257, Sept. 2012. ilus
Article in Spanish | LILACS | ID: lil-710629

ABSTRACT

Los estudios sobre los efectos del envejecimiento en la fisiología y el metabolismo cada vez son más, uno de sus objetivos es contribuir a instrumentar programas para mejorar la calidad de vida y prevenir discapacidades en la vejez. Es de gran importancia mencionar que durante el envejecimiento se presenta una desaceleración natural del metabolismo, se produce una serie de cambios en la regulación de la energía, lo que contribuye a la pérdida de peso y grasa; estos cambios en la regulación de la ingesta calórica contribuyen en un aumento de la susceptibilidad al desequilibrio energético tanto positivo como negativo, lo cual va asociado a un deterioro en la salud. Sin embargo, el llegar a la vejez, no es una sentencia de muerte para el metabolismo, por el contrario, éste puede ser controlado mediante el mantenimiento de un estilo de vida activo, aunado a esto investigaciones han demostrado que el metabolismo puede ser regulado mediante el papel que desempeña un sistema de reloj sincronizado (ritmos biológicos), el cual a su vez es modulado por varias proteínas reguladoras; esta relación garantiza que las células funcionen correctamente y por tanto el mantenerse saludables. El objetivo de esta revisión es aportar información actualizada sobre la regulación metabolismo-energía y su relación con la gran variedad de componentes involucrados en el gasto energético que acompañan al envejecimiento; analizar la regulación de este sistema para mejorar la calidad de vida y mantener la salud en la vejez.


Aging and metabolism: changes and regulation. Studies about the effects of aging in the physiology and metabolism are increasingly, one of its objectives is to help implement programs to improve the quality of life and prevent disability in elderly. It is relevant to mention that, during aging, there is a natural metabolic deceleration, a series of changes in the regulation of energy are produced, which contributes to loss of weight and fat; the changes in the regulation of caloric intake contribute to increase the susceptibility to energy imbalance both positive and negative, which is associated with a deterioration in health. However, to grow old, is not a death sentence for metabolism, on the other hand, it can be controlled by maintaining an active lifestyle, coupled with this, research has shown that the metabolism can be regulated by a synchronized clock (circadian rhythms), which is mediated by regulatory proteins, this relationship ensures the proper functioning of the cells and therefore good health. The aim of this review is to provide updated information on the energy- metabolism-regulation and its relationship with the great variety of components involved in energy expenditure that accompany aging, to analyze the regulation of this system to improve the quality of life and maintenance of health in old age.


Subject(s)
Aged , Aged, 80 and over , Humans , Aging/metabolism , Energy Intake/physiology , Energy Metabolism/physiology , Circadian Rhythm/physiology , Feeding Behavior/physiology , Nutritional Status
16.
Arch Latinoam Nutr ; 62(3): 249-57, 2012 Sep.
Article in Spanish | MEDLINE | ID: mdl-24617027

ABSTRACT

Studies about the effects of aging in the physiology and metabolism are increasingly, one of its objectives is to help implement programs to improve the quality of life and prevent disability in elderly. It is relevant to mention that, during aging, there is a natural metabolic deceleration, a series of changes in the regulation of energy are produced, which contributes to loss of weight and fat; the changes in the regulation of caloric intake contribute to increase the susceptibility to energy imbalance both positive and negative, which is associated with a deterioration in health. However, to grow old, is not a death sentence for metabolism, on the other hand, it can be controlled by maintaining an active lifestyle, coupled with this, research has shown that the metabolism'can be regulated by a synchronized clock (circadian rhythms), which is mediated by regulatory proteins, this relationship ensures the proper functioning of the cells and therefore good health. The aim of this review is to provide updated information on the energy- metabolism-regulation and its relationship with the great variety of components involved in energy expenditure that accompany aging, to analyze the regulation of this system to improve the quality of life and maintenance of health in old age.


Subject(s)
Aging/metabolism , Energy Intake/physiology , Energy Metabolism/physiology , Aged , Aged, 80 and over , Circadian Rhythm/physiology , Feeding Behavior/physiology , Humans , Nutritional Status
SELECTION OF CITATIONS
SEARCH DETAIL
...