Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(8): e18939, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600412

ABSTRACT

This work focuses on the study of the physicochemical changes that take place during the first stage of ripening of plantain, with particular attention to the changes in the orthorhombic and hexagonal nanocrystals present in this starch, and its relation shift with resistance starch. Significant changes were observed in the proximal analysis of plantain flour. A gradual increase in moisture content was attributed to the high content of crystalline structures and molecules that can be removed by drying. Water activity increased with ripening, which was attributed to the hygroscopic nature of the flours. The protein content increased, and the carbohydrate content decreased, indicating the progress of biochemical reactions. The changes in the fat content are consistent with the hydrolysis and resynthesis of lipids during the ripening process. The obtained results indicate a significant influence of the ripening stage on the physicochemical properties of flour and starch of plantain, which is associated with the occurrence of a climacteric peak on the 4th day of ripening. The hydration properties of plantain flour decreased significantly during the ripening days, consistent with the occurrence of a climacteric peak. Water holding capacity (WHC) and water binding capacity (WBC) were affected by the degree of digestion of native starch granules and protein denaturation during fruit ripening. Scanning electron microscopes (SEM) showed that during ripening the surface of the isolated starches do not suffer any significative damage. X-ray diffraction patterns were used to identify crystalline structures and to study the changes in the crystalline structures. These results showed that the starch contains orthorhombic and hexagonal nanocrystals, which play and important role and which show small structural damage during ripening reflected in a decrease in their relative crystallinity. This is the first time that these nanocrystals have been studied and considered in the ripening process. Differential scanning calorimetry was used to study the thermal transition in isolated starch. The results indicated that the gelatinization of starch corresponds to the solvation of orthorhombic and hexagonal nanocrystals, and that during ripening there is a decrease in the enthalpy reflecting some crystal structural damage. Pasting properties were studied using a Starch cell for flours and isolated starches, indicating that the pasting profile is governed by intrinsic and extrinsic factors. The resistant starch does not show significant changes at this stage of maturation. This starch is the one with the highest resistant starch content reported in the literature (38%). It was hypothesized that the resistant starch is directly related to the amount of whole starch granules, and more importantly, directly related to the number concentration of orthorhombic and hexagonal nanocrystals. Therefore, knowledge of the physicochemical and nutritional properties of plantain and flour at each stage of ripening allows better selection according to industrial applications.

2.
Food Chem ; 298: 124982, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31261014

ABSTRACT

This work studies the physicochemical properties of quinoa flour and isolated starch. Starch in the seed forms clusters rich in amylopectin that are immersed in a matrix with spherical and polygonal shapes in the submicron scale. The isolated quinoa starch is rich in Sulphur and Magnesium. The quinoa flour has a higher content of protein, carbohydrates and lipids than isolated starch. Water absorption and water solubilized indexes of starch exhibited high values that could had originated by the extraction method. The broad peaks found for the X-ray patterns of isolated quinoa starch indicate that amylose and amylopectin are composed by nanocrystals, according to the PDF-4+2019 software. The viscosity of isolated starch had a higher value than flour; therefore, the quinoa starch could be used as a thickener in different formulations with the advantage of keeping a significant presence of minerals which are important to the human health.


Subject(s)
Chenopodium quinoa/chemistry , Flour/analysis , Food Analysis/methods , Starch/chemistry , Amylopectin/chemistry , Amylose/analysis , Microscopy, Electron, Scanning , Minerals/analysis , Seeds/chemistry , Seeds/ultrastructure , Solubility , Spectroscopy, Fourier Transform Infrared , Starch/analysis , Starch/ultrastructure , Temperature , Viscosity , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...