Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 859(Pt 1): 160293, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36403828

ABSTRACT

With increasing storminess and incessant sea-level rise, coastal erosion is becoming a primary issue along many littorals in the world. To cope with present and future climate change scenarios, it is important to map the shoreline position over years and assess the coastal erosion trends to select the best risk management solutions and guarantee a sustainable management of communities, structures, and ecosystems. However, this objective is particularly challenging on gentle-sloping sandy coasts, where also small sea-level changes trigger significant morphological evolutions. This study presents a multidisciplinary study combining satellite images with Machine Learning and GIS-based spatial tools to analyze short-term shoreline evolution trends and detect erosion hot-spots on the Venice coast over the period 2015-2019. Firstly, advanced image preprocessing, which is not frequently adopted in coastal erosion studies, was performed on satellite images downloaded within the same tidal range. Secondly, different Machine Learning classification methods were tested to accurately define shoreline position by recognizing the land-sea interface in each image. Finally, the application of the Digital Shoreline Analysis System tool was performed to evaluate and visualize coastal changes over the years. Overall, the case study littoral reveals to be stable or mainly subjected to accretion. This is probably due to the high presence of coastal protection structures that stabilize the beaches, enhancing deposition processes. In detail, with respect to the total length of the considered shoreline (about 83 km), 5 % of the coast is eroding, 36 % is stable, 52 % is accreting and 7 % is not evaluable. Despite a significant coastal erosion risk was not recognized within this region, well-delimited erosion hot-spots were mapped in correspondence of Caorle, Jesolo and Cavallino-Treporti municipalities. These areas deserve higher attention for territorial planning and prioritization of adaptation measures, facing climate change scenarios and sea-level rise emergencies in the context of Integrated Coastal Zone Management.


Subject(s)
Climate Change , Ecosystem , Machine Learning
2.
Sci Total Environ ; 772: 144650, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33770878

ABSTRACT

Understanding how natural and human-induced drivers will contribute to rising vulnerability and risks in coastal areas requires a broader use of future projections capturing the spatio-temporal dynamics which drive changes in the different vulnerability dimensions, including the socio-demographic and economic spheres. To go beyond the traditional approaches for coastal vulnerability appraisal, a Multi-dimensional Coastal Vulnerability Index (MDim-CVI) - integrating a composite set of physical, environmental and socio-economic indicators - is proposed to rank Italian coastal provinces according to their relative vulnerability to extreme sea level scenarios, in 2050. Specifically, information on hazard-prone areas, potentially inundated by sea level rise and extreme water levels (under the RCP8.5 climate scenario) is combined with indicators of geomorphic vulnerability (e.g. elevation, distance from coastline, shoreline evolution trend) exposure, and adaptive capacity (e.g. sensible segments of the population, GDP, land use patterns). The methodology is applied to a reference timeframe, representing current climate and land use condition, and a future scenario for the year 2050, integrating both climate projections and data simulating potential evolution of the environmental and socio-economic systems. Results show that most vulnerable provinces are located in the North Adriatic, the Gargano area and other Southern parts of Italy, mostly due to the very high vulnerability scores reported by climate-related indicators (e.g. extreme sea level). The number of vulnerable provinces as well as the magnitude of vulnerability is expected to increase in the future due to the worsening of climate, environmental, and socio-economic conditions (e.g. land use variations and increase of the elderly population). These outcomes can timely inform integrated coastal zone management and support climate adaptation planning.

3.
Sci Total Environ ; 628-629: 919-937, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30045581

ABSTRACT

There is high confidence that the anthropogenic increase of atmospheric greenhouse gases (GHGs) is causing modifications in the Earth's climate. Coastal waterbodies such as estuaries, bays and lagoons are among those most affected by the ongoing changes in climate. Being located at the land-sea interface, such waterbodies are subjected to the combined changes in the physical-chemical processes of atmosphere, upstream land and coastal waters. Particularly, climate change is expected to alter phytoplankton communities by changing their environmental drivers (especially climate-related), thus exacerbating the symptoms of eutrophication events, such as hypoxia, harmful algal blooms (HAB) and loss of habitat. A better understanding of the links between climate-related drivers and phytoplankton is therefore necessary for projecting climate change impacts on aquatic ecosystems. Here we present the case study of the Zero river basin in Italy, one of the main contributors of freshwater and nutrient to the salt-marsh Palude di Cona, a coastal waterbody belonging to the lagoon of Venice. To project the impacts of climate change on freshwater inputs, nutrient loadings and their effects on the phytoplankton community of the receiving waterbody, we formulated and applied an integrated modelling approach made of: climate simulations derived by coupling a General Circulation Model (GCM) and a Regional Climate Model (RCM) under alternative emission scenarios, the hydrological model Soil and Water Assessment Tool (SWAT) and the ecological model AQUATOX. Climate projections point out an increase of precipitations in the winter period and a decrease in the summer months, while temperature shows a significant increase over the whole year. Water discharge and nutrient loads simulated by SWAT show a tendency to increase (decrease) in the winter (summer) period. AQUATOX projects changes in the concentration of nutrients in the salt-marsh Palude di Cona, and variations in the biomass and species of the phytoplankton community.

4.
Sci Total Environ ; 562: 1031-1043, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27161907

ABSTRACT

Global climate change is likely to pose increasing threats in nearly all sectors and across all sub-regions worldwide (IPCC, 2014). Particularly, extreme weather events (e.g. heavy precipitations), together with changing exposure and vulnerability patterns, are expected to increase the damaging effect of storms, pluvial floods and coastal flooding. Developing climate and adaptation services for local planners and decision makers is becoming essential to transfer and communicate sound scientific knowledge about climate related risks and foster the development of national, regional and local adaptation strategies. In order to analyze the effect of climate change on pluvial flood risk and advice adaptation planning, a Regional Risk Assessment (RRA) methodology was developed and applied to the urban territory of the municipality of Venice. Based on the integrated analysis of hazard, exposure, vulnerability and risk, RRA allows identifying and prioritizing targets and sub-areas that are more likely to be affected by pluvial flood risk due to heavy precipitation events in the future scenario 2041-2050. From the early stages of its development and application, the RRA followed a bottom-up approach taking into account the requests, knowledge and perspectives of local stakeholders of the North Adriatic region by means of interactive workshops, surveys and discussions. Results of the analysis showed that all targets (i.e. residential, commercial-industrial areas and infrastructures) are vulnerable to pluvial floods due to the high impermeability and low slope of the topography. The spatial pattern of risk mostly reflects the distribution of the hazard and the districts with the higher percentage of receptors' surface in the higher risk classes (i.e. very high, high and medium) are Lido-Pellestrina and Marghera. The paper discusses how risk-based maps and statistics integrate scientific and local knowledge with the final aim to mainstream climate adaptation in the development of risk mitigation and urban plans.


Subject(s)
Climate Change , Floods/statistics & numerical data , Risk Assessment/methods , Cities , Environmental Monitoring/methods , Italy , Rivers , Weather
5.
Mar Pollut Bull ; 102(2): 271-82, 2016 Jan 30.
Article in English | MEDLINE | ID: mdl-26152856

ABSTRACT

Climate change is posing additional pressures on coastal ecosystems due to variations in water biogeochemical and physico-chemical parameters (e.g., pH, salinity) leading to aquatic ecosystem degradation. With the main aim of analyzing the potential impacts of climate change on marine water quality, a Regional Risk Assessment methodology was developed and applied to coastal marine waters of the North Adriatic. It integrates the outputs of regional biogeochemical and physico-chemical models considering future climate change scenarios (i.e., years 2070 and 2100) with site-specific environmental and socio-economic indicators. Results showed that salinity and temperature will be the main drivers of changes, together with macronutrients, especially in the area of the Po' river delta. The final outputs are exposure, susceptibility and risk maps supporting the communication of the potential consequences of climate change on water quality to decision makers and stakeholders and provide a basis for the definition of adaptation and management strategies.


Subject(s)
Climate Change , Environmental Monitoring/methods , Water Quality , Italy , Mediterranean Sea , Risk Assessment/methods
6.
Sci Total Environ ; 537: 100-14, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26282744

ABSTRACT

Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems.

7.
Sci Total Environ ; 440: 154-66, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22940008

ABSTRACT

Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life+ project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced information about the potential variations of the water balance components (e.g. river discharge, groundwater level and volume) due to climate change. Such projections were used to develop potential hazard scenarios for the case study area, to be further applied within climate change risk assessment studies for groundwater resources and associated ecosystems. This paper describes the models' chain and the methodological approach adopted in the TRUST project and analyzes the hazard scenarios produced in order to investigate climate change risks for the case study area.


Subject(s)
Climate Change , Environmental Monitoring/methods , Groundwater , Models, Theoretical , Water Resources , Conservation of Natural Resources , Environmental Policy/legislation & jurisprudence , European Union , Government Regulation , Italy , Rivers , Water Quality/standards , Water Supply
8.
Sci Total Environ ; 440: 219-35, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22863150

ABSTRACT

Climate change impact assessment on water resources has received high international attention over the last two decades, due to the observed global warming and its consequences at the global to local scale. In particular, climate-related risks for groundwater and related ecosystems pose a great concern to scientists and water authorities involved in the protection of these valuable resources. The close link of global warming with water cycle alterations encourages research to deepen current knowledge on relationships between climate trends and status of water systems, and to develop predictive tools for their sustainable management, copying with key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution model simulations for the 2071-2100 period, according to IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant outcomes from the described RRA application highlighted that potential climate change impacts will occur with different extension and magnitude in the case study area. Particularly, qualitative and quantitative impacts on groundwater will occur with more severe consequences in the wettest and in the driest scenario (respectively). Moreover, such impacts will likely have little direct effects on related ecosystems - croplands, forests and natural environments - lying along the spring area (about 12% of croplands and 2% of natural environments at risk) while more severe consequences will indirectly occur on natural and anthropic systems through the reduction in quality and quantity of water availability for agricultural and other uses (about 80% of agricultural areas and 27% of groundwater bodies at risk).

9.
Eur Respir J ; 35(2): 266-72, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19679604

ABSTRACT

The aim of the present study was to test the effects of exposure to air pollutants on lung function. A panel of 19 adult asthmatics living in Padua (Italy) was followed for five 30-day periods during 2 yrs consecutively (1,492 morning and 1,434 evening measures analysed). Peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV(1)) were measured using a pocket electronic meter. Daily levels of air pollutants and meteorological variables were collected at outdoor city monitoring sites. Significant inverse associations were observed between morning and evening PEF and carbon monoxide level (p = 0.01-0.03), without clear differences between lags (0-3 days). An increment of 1 mg.m(-3) CO was associated with a PEF variation ranging -2.6- -2.8%. All effect estimates on PEF for CO remained significant and even increased after controlling for particles with a 50% cut-off aerodynamic diameter of 10 microm (PM(10)), nitrogen dioxide and sulphur dioxide in single and multi-pollutant models. A similar trend was observed for FEV(1), but the associations were nonsignificant. A nonsignificant inverse relationship between evening PEF and SO(2) was also detected. PEF and FEV(1) were not related to PM(10) and NO(2) concentrations. The present results indicate that, in this panel of adult asthmatics, the worsening of lung function is associated with exposure to gaseous pollutants and occurs at levels of CO and SO(2) lower than current European standards.


Subject(s)
Air Pollutants/toxicity , Asthma/diagnosis , Asthma/etiology , Carbon Monoxide/toxicity , Environmental Monitoring/methods , Lung/drug effects , Adult , Europe , Forced Expiratory Flow Rates , Gases , Humans , Nitrogen Dioxide/toxicity , Peak Expiratory Flow Rate , Sulfur Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...