Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Virol ; 158(6): 1377-82, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23397330

ABSTRACT

Complete nucleotide (nt) and deduced amino acid sequences of two onion yellow dwarf virus (OYDV) isolates showing mild and severe symptoms in onion but being unable to infect garlic were determined. The genomes consisted of 10,459 and 10,461 nt (without the 3' poly(A) tail) and were 92.2 % identical. Comparison of their whole genomes, polyproteins and P1, HC-Pro, P3, CI, VPg and NIa-Pro regions with those of garlic isolates previously identified as OYDV gave percentage values below that proposed as the molecular threshold for potyvirus species demarcation. This and the striking differences in host range between onion and garlic isolates suggest that they represent different virus species.


Subject(s)
Garlic/virology , Onions/virology , Plant Diseases/virology , Potyvirus/genetics , Amino Acid Sequence , Base Sequence , Genome, Viral/genetics , Molecular Sequence Data , Potyvirus/pathogenicity
2.
Plant Dis ; 94(7): 915, 2010 Jul.
Article in English | MEDLINE | ID: mdl-30743582

ABSTRACT

Because of exclusively agamic propagation, garlic is commonly infected with a virus complex mainly composed of species within the genera Potyvirus, Allexivirus, and Carlavirus. This virus complex causes leaf striping that ranges from various shades of green to yellow and results in yield losses (2,4). Onion yellow dwarf virus, Leek yellow stripe virus (potyviruses), Garlic virus A, Garlic virus C (allexiviruses), and Garlic common latent virus (carlavirus) have been detected in Argentina previously (1,2). Recently, Shallot latent virus (SLV; another carlavirus) was detected in 25 of 30 garlic plants (cv. Morado) growing in four different fields near Córdoba, Argentina by double-antibody sandwich (DAS)-ELISA using BIOREBA (Reinach, Switzerland) antibodies. To confirm the presence of the virus, DAS-ELISA-positive plants were also analyzed by one-step reverse transcription (RT)-PCR using the Access RT-PCR system (Promega, Madison, WI) with specific primers reported by Tsuneyoshi et al. (3). RNA extractions were performed from 100 mg of leaves with the Qiagen RNeasy Plant Mini Kit (Qiagen, Valencia, CA). Primers used were Car-V1 (5'-AAACCTTTTGGTTCACTTTAGG-3'); Car-V2 (5'-AGGTGCATTGTTATCATTACTGG-3'); and Car-Cp3 (5'-GCGTGCTATATTTAAGTTGCATAC-3'). Primer pairs Car-V1/Car-Cp3 and Car-V2/Car-Cp3 were used for the amplification of the coat protein (CP) gene of SLV and an isolate of SLV formerly known as Garlic latent virus, respectively. Fragments of 992 bp and 1,079 bp were amplified with these primer pairs, respectively. The RT-PCR products were cloned with the TOPO TA Cloning Kit in the 3.9-kb pCR-TOPO vector (Qiagen). The nucleotide sequences of both fragments were determined and were found to be identical (GenBank No. GU355922) showing 94.2% nt sequence identity with the CP gene of an isolate of SLV from Indonesian garlic (GenBank No. AB004686) formerly referred to as Garlic latent virus (3). Consequently, the Argentinean virus is now considered a garlic isolate of SLV. References: (1) E. Cafrune et al. Plant Dis. 90:898, 2006. (2) V. C. Conci. Virus y Fitoplasmas de Ajo. Page 267 in: 50 Temas Sobre Producción de Ajo. Vol. 3. J. L. Burba, ed. Ediciones INTA, Mendoza, Argentina. 1997. (3) T. Tsuneyoshi et al. Arch. Virol. 143:1093, 1998. (4) D. G. A. Walkey and D. N. Antill. J. Hortic. Sci. 64:53, 1989.

SELECTION OF CITATIONS
SEARCH DETAIL
...