Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(4)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37421045

ABSTRACT

SiC detectors based on a Schottky junction represent useful devices to characterize fast laser-generated plasmas. High-intensity fs lasers have been used to irradiate thin foils and to characterize the produced accelerated electrons and ions in the target normal sheath acceleration (TNSA) regime, detecting their emission in the forward direction and at different angles with respect to the normal to the target surface. The electrons' energies have been measured using relativistic relationships applied to their velocity measured by SiC detectors in the time-of-flight (TOF) approach. In view of their high energy resolution, high energy gap, low leakage current, and high response velocity, SiC detectors reveal UV and X-rays, electrons, and ions emitted from the generated laser plasma. The electron and ion emissions can be characterized by energy through the measure of the particle velocities with a limitation at electron relativistic energies since they proceed at a velocity near that of the speed of light and overlap the plasma photon detection. The crucial discrimination between electrons and protons, which are the fastest ions emitted from the plasma, can be well resolved using SiC diodes. Such detectors enable the monitoring of the high ion acceleration obtained using high laser contrast and the absence of ion acceleration using low laser contrast, as presented and discussed.

2.
Polymers (Basel) ; 15(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36904413

ABSTRACT

Thin sheets of ultra-high molecular weight polyethylene (UHMWPE), both in pristine form and containing carbon nanotubes (CNTs) or Fe2O3 nanoparticles (NPs) at different concentrations, were prepared. The CNT and Fe2O3 NP weight percentages used ranged from 0.01% to 1%. The presence of CNTs and Fe2O3 NPs in UHMWPE was confirmed by transmission and scanning electron microscopy and by energy dispersive X-ray spectroscopy analysis (EDS). The effects of the embedded nanostructures on the UHMWPE samples were studied using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and UV-Vis absorption spectroscopy. The ATR-FTIR spectra show the characteristic features of the UHMWPE, CNTs, and Fe2O3. Concerning the optical properties, regardless of the type of embedded nanostructures, an increase in the optical absorption was observed. The allowed direct optical energy gap value was determined from the optical absorption spectra: in both cases, it decreases with increasing CNT or Fe2O3 NP concentrations. The obtained results will be presented and discussed.

3.
Rep Pract Oncol Radiother ; 24(5): 450-457, 2019.
Article in English | MEDLINE | ID: mdl-31388339

ABSTRACT

AIM: A study on the possibility to use gold nanoparticles in mammography, both for a better image diagnostics and radiotherapy, is presented and discussed. We evaluate quantitatively the increment of dose released to the tumor enriched with Au-NPs with respect to the near healthy tissues, finding that for X-rays the increase can reach two orders of greater intensity. BACKGROUND: Gold nanoparticles continue to be investigated for their potential to improve existing therapies and to develop novel therapies. They are simple to obtain, can be functionalized with different chemical approaches, are stable, non-toxic, non-immunogenic and have high permeability and retention effects in the tumor cells. The possibility to use these for breast calcified tumors to be better treated by radiotherapy is presented as a possible method to destroy the tumor. MATERIALS AND METHODS: The nanoparticles can be generated in water using the top-down method, should have a size of the order of 10-20 nm and be treated to avoid their coalescence. Under diagnostic X-ray monitoring, the solution containing nanoparticles can be injected locally inside the tumor site avoiding injection in healthy tissues. The concentrations that can be used should be of the order of 10 mg/ml or higher. RESULTS: An enhancement of the computerized tomography diagnostics using 80-150 keV energy is expected, due to the higher mass X-ray coefficient attenuation with respect to other contrast media. Due to the increment of the effective atomic number of the biological tissue containing the gold nanoparticles, also an improvement of the radiotherapy effect using about 30 keV X-ray energy is expected, due to the higher photoelectric cross sections involved. CONCLUSIONS: The study carried out represents a feasibility proposal for the use of Au-nanoparticles for mammographic molecular imaging aimed at radiotherapy of tumor nodules but no clinical results are presented.

4.
J Microsc ; 265(2): 251-260, 2017 02.
Article in English | MEDLINE | ID: mdl-27766644

ABSTRACT

We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy.

5.
Microsc Microanal ; 21(5): 1214-23, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26373378

ABSTRACT

Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.


Subject(s)
Biology/methods , Microscopy/instrumentation , Microscopy/methods , Nanotechnology/methods , Animals , Carbon , Carcinoma/pathology , Colonic Neoplasms/pathology , Fibroblasts/cytology , Image Processing, Computer-Assisted , Mice , Water , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...