Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(3): 033302, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35364983

ABSTRACT

This paper reviews the main microwave diagnostic techniques and tools adopted in electron cyclotron resonance (ECR) (and others) ion source laboratories, with a special focus on techniques and instruments developed at INFN-LNS. Along with the tools used for optimization of microwave launching (power monitors, spectral analysis, and network analyzers), this paper deals, in particular, with more recent devices on-purpose developed to perform in-plasma analysis, such as absolute density measurements and density profiles retrieval. Among these, the first example of microwave interferometry for ECR compact machines (the VESPRI interferometer at INFN-LNS) will be briefly discussed, in combination with microwave polarimetric techniques based on Faraday rotation detection. More sophisticated microwave techniques are going to be designed and are now at a numerical study stage, e.g., profilometry and imaging via inverse scattering methods (this paper will offer short theoretical bases and first numerical results on 1D profilometry). In the end, the relevance about the implications and interplays of microwave techniques in multidiagnostic systems (microwave, optical, and x-ray domains) will be commented, with a special focus on time resolved microwave measurements and advanced signal processing via wavelet transform, useful for characterization of plasma instabilities.


Subject(s)
Cyclotrons , Electrons , Microwaves , Vibration
2.
Phys Rev E ; 104(4-2): 045313, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781444

ABSTRACT

The dynamic cavity method provides the most efficient way to evaluate probabilities of dynamic trajectories in systems of stochastic units with unidirectional sparse interactions. It is closely related to sum-product algorithms widely used to compute marginal functions from complicated global functions of many variables, with applications in disordered systems, combinatorial optimization, and computer science. However, the complexity of the cavity approach grows exponentially with the in-degrees of the interacting units, which creates a defacto barrier for the successful analysis of systems with fat-tailed in-degree distributions. In this paper, we present a dynamic programming algorithm that overcomes this barrier by reducing the computational complexity in the in-degrees from exponential to quadratic, whenever couplings are chosen randomly from (or can be approximated in terms of) discrete, possibly unit-dependent, sets of equidistant values. As a case study, we analyze the dynamics of a random Boolean network with a fat-tailed degree distribution and fully asymmetric binary ±J couplings, and we use the power of the algorithm to unlock the noise-dependent heterogeneity of stationary node activation patterns in such a system.

3.
Rev Sci Instrum ; 87(2): 02A510, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931918

ABSTRACT

An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs-Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

4.
Rev Sci Instrum ; 87(2): 02B909, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932081

ABSTRACT

The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10(11)-10(13) cm(-3) and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called "frequency sweep" method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...