Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(11): 2944-2957, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38716822

ABSTRACT

In vitro display technologies such as yeast display have been instrumental in developing the selection of new antibodies, antibody fragments or nanobodies that bind to a specific target, with affinity towards the target being the main factor that influences selection outcome. However, the roles of mechanical forces are being increasingly recognized as a crucial factor in the regulation and activation of effector cell function. It would thus be of interest to isolate binders behaving optimally under the influence of mechanical forces. We developed a microfluidic assay allowing the selection of yeast displaying nanobodies through antigen-specific immobilization on a surface under controlled hydrodynamic flow. This approach enabled enrichment of model yeast mixtures using tunable antigen density and applied force. This new force-based selection method opens the possibility of selecting binders by relying on both their affinity and force resistance, with implications for the design of more efficient immunotherapeutics.


Subject(s)
Antigens , Saccharomyces cerevisiae , Single-Domain Antibodies , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/immunology , Saccharomyces cerevisiae/metabolism , Antigens/immunology , Antigens/metabolism , Microfluidic Analytical Techniques/instrumentation
2.
Curr Biol ; 34(9): 1853-1865.e6, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38604167

ABSTRACT

Different signaling mechanisms concur to ensure robust tissue patterning and cell fate instruction during animal development. Most of these mechanisms rely on signaling proteins that are produced, transported, and detected. The spatiotemporal dynamics of signaling molecules are largely unknown, yet they determine signal activity's spatial range and time frame. Here, we use the Caenorhabditis elegans embryo to study how Wnt ligands, an evolutionarily conserved family of signaling proteins, dynamically organize to establish cell polarity in a developing tissue. We identify how Wnt ligands, produced in the posterior half of the embryos, spread extracellularly to transmit information to distant target cells in the anterior half. With quantitative live imaging and fluorescence correlation spectroscopy, we show that Wnt ligands diffuse through the embryo over a timescale shorter than the cell cycle, in the intercellular space, and outside the tissue below the eggshell. We extracted diffusion coefficients of Wnt ligands and their receptor Frizzled and characterized their co-localization. Integrating our different measurements and observations in a simple computational framework, we show how fast diffusion in the embryo can polarize individual cells through a time integration of the arrival of the ligands at the target cells. The polarity established at the tissue level by a posterior Wnt source can be transferred to the cellular level. Our results support a diffusion-based long-range Wnt signaling, which is consistent with the dynamics of developing processes.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Polarity , Embryo, Nonmammalian , Wnt Proteins , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/metabolism , Wnt Proteins/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology , Ligands , Wnt Signaling Pathway , Diffusion
SELECTION OF CITATIONS
SEARCH DETAIL
...