Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Appl Opt ; 61(11): 3230-3239, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35471307

ABSTRACT

We demonstrate the generation of phase holograms of multiple 3D objects at different axial positions without cross talk and significant improvements in performance over conventional methods. We first obtain the phase hologram of two 3D objects, each one comprising 50 layers, using the global Gerchberg-Saxton algorithm. Then, we discuss and demonstrate a propagation approach based on the singular value decomposition of the Fresnel impulse response function that enables fast computation of small distance propagations. Finally, we propose a new iterative hologram generation algorithm, to the best of our knowledge, that takes advantage of this propagation approach and use it to make the hologram of the same scene previously obtained with the global Gerchberg-Saxton algorithm. We perform numerical and experimental reconstructions to compare both methods, demonstrating that our proposal achieves 4 times faster computation, as well as improved reconstruction quality.

2.
Appl Opt ; 61(5): B8-B16, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35201120

ABSTRACT

In this work, we introduce a modified hologram plane constraint to improve the accuracy of the global Gerchberg-Saxton (GGS) algorithm used for multiplane phase-only hologram generation. This constraint consists of a modified phase factor that depends on the amplitude of the field in the hologram plane. We demonstrate that this constraint produces an increase in the mean correlation coefficient between the reconstructed planes from a multiplane hologram and the corresponding amplitude targets for each plane. Furthermore, this constraint can be applied together with a mixed constraint in the reconstruction planes, leading to a more uniform and controllable reproduction of a target intensity distribution. To confirm the validity of our proposal, we show numerical and experimental results for multiplane holograms with six discrete planes, using both high and low contrast targets. For the experimental results, we implement a holographic projection scheme based on a phase-only spatial light modulator.

3.
Appl Opt ; 60(7): 1888-1895, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33690278

ABSTRACT

In this paper, we implement a mixed constraint scheme with a global Gerchberg-Saxton algorithm for the improved generation of phase holograms from multiplane intensity distributions. We evaluate the performance of the proposed method compared to the mixed constraint sequential Gerchberg-Saxton algorithm, as well as the implementation of both schemes in several scenarios involving intensity distributions of up to nine independent planes. We also show that a careful selection of the parameters involved in the mixed constraint hologram generation technique can lead to even greater improvements in reconstruction quality. We present numerical results validating the effectiveness of our proposal.

4.
Appl Opt ; 59(14): 4377-4384, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32400415

ABSTRACT

In this paper, we introduce a mixed complex and phase-only constraint for noniterative computer generation of phase-only holograms from multiplane intensity distributions. We are able to reproduce three-dimensional intensity distributions with the same number of planes achieved with the Gerchberg-Saxton (GS) algorithm; at the same time, we maintain the fast computation time of a noniterative method. In this way, we enable the possibility of multiplane light field control in dynamic applications. We show numerical results for three- and eight-plane holograms, for different interplane distances-using either the same or different amplitude constraints in each plane. In all of these tests, our method results in a comparable or better reconstruction quality than the GS algorithm, while achieving a significant decrease in computing time. Finally, we experimentally demonstrate the capability of our proposal to achieve multiplane holographic projection.

5.
Appl Opt ; 59(13): D230-D238, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32400646

ABSTRACT

In this paper we present an optodigital protocol for the compression of 3D dynamic scenes recorded with an off-axis Fresnel holographic system. The compression protocol involves optical scaling, sampling with binary masks, and multiplexing of the optical field data obtained after a filtering process applied to Fresnel holograms. Volume reduction of up to 93.71% and a 16-fold decrease in the transfer time are achieved. Virtual-optical reconstruction is performed for different values of the parameters involved in the compression protocol. The correlation coefficient is used as a metric to measure the loss caused by the volume reduction process. Furthermore, we show that a high level of lossy compression can be achieved with this protocol, with better reconstruction quality than the MPEG-4 video compression technique. Finally, we perform the experimental reconstruction using a holographic projection system based on a phase-only spatial light modulator, thus highlighting the potential of our proposal.

6.
Appl Opt ; 58(32): 9013-9019, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31873682

ABSTRACT

In this work, we introduce a technique for fast, high-quality, non-iterative generation of phase-only holograms from both 2D and 3D scenes. In this technique, we generate an optimized random phase tile which behaves like a small diffuser, spreading the amplitude of a section of the scene throughout the hologram plane. Each section of the scene is multiplied by this tile and then propagated to the hologram plane by means of the Fresnel transform. The contribution from each tile is added, resulting in a phase-only hologram of the scene. The optimized random phase tiles can be generated for any distance between the hologram plane and the object using an iterative Fresnel algorithm. Afterwards, this tile can be used to generate holograms from any number of objects without the need for further iterative algorithms. These holograms present increased quality after reconstruction compared to similar non-iterative hologram generation techniques. Both numerical and optical experiments are carried out, demonstrating the effectiveness of our proposal.

7.
Appl Opt ; 58(22): 6144-6151, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31503939

ABSTRACT

In this paper, we show how a specially designed synthetic amplitude can be used to obtain greatly improved reconstruction of objects only using the phase data of their Fourier or Fresnel transforms. The reconstruction of objects from phase-only information is of interest because phase modulation has much higher efficiency than amplitude modulation and can be achieved with a high degree of precision with current liquid-crystal-on-silicon spatial light modulators. However, direct reconstruction of an object from its phase information usually results in severely degraded outputs. Due to this issue, to achieve optimal reconstruction, the object information must be codified in a phase hologram by means of time-consuming algorithms. To avoid these kinds of algorithms, we propose using a synthetic amplitude, designed in such a way that, when multiplied with the phase information of the object, leads to high-quality reconstruction. This synthetic amplitude contains no information about the object and can be used to reconstruct a number of different inputs without further processing. We present experiments carried out in virtual and actual optical systems verifying the validity of our proposal for 2D, 3D, and dynamic scenes.

8.
Opt Lett ; 43(15): 3558-3561, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30067709

ABSTRACT

We propose for the first time, to the best of our knowledge, the use of optimized random phases (ORAPs) in a double random phase encryption scheme (DRPE). In DRPE schemes the convolution between two random phase functions encrypts the information to be secured. However, in actual encryption applications, this convolution of random phases also results in unwanted effects like speckle noise. In this Letter we show that under certain conditions this noise can be drastically reduced. These conditions can be easily achieved by using ORAPs. These ORAPs, besides containing information about the parameters of the optical system and maintaining all the security properties of a random phase function, ensure that the encrypted data is a phase-only function. This leads to a great increase in system performance, with decryption quality similar to the reconstruction of a phase-only hologram generated with the Gerchberg-Saxton algorithm. We show both numerical and experimental results confirming the validity of our proposal.

9.
Opt Lett ; 43(4): 731-734, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29444064

ABSTRACT

We propose a simple and efficient technique capable of generating Fourier phase only holograms with a reconstruction quality similar to the results obtained with the Gerchberg-Saxton (G-S) algorithm. Our proposal is to use the traditional G-S algorithm to optimize a random phase pattern for the resolution, pixel size, and target size of the general optical system without any specific amplitude data. This produces an optimized random phase (ORAP), which is used for fast generation of phase only holograms of arbitrary amplitude targets. This ORAP needs to be generated only once for a given optical system, avoiding the need for costly iterative algorithms for each new target. We show numerical and experimental results confirming the validity of the proposal.

10.
Appl Opt ; 56(21): 5883-5889, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-29047905

ABSTRACT

In this paper, we present a new protocol for achieving lower noise and consequently a higher dynamic range in optical encryption. This protocol allows for the securing and optimal recovery of any arbitrary grayscale images encrypted using an experimental double random phase mask encoding (DPRE) cryptosystem. The protocol takes advantage of recent advances that help reduce the noise due to the correlation of random phase mask in the decryption procedure and introduces the use of a "reference mask" as a reference object used to eliminate the noise due to the complex nature of the masks used in experimental DRPE setups. This noise reduction increases the dynamic range of the decrypted data, retaining the grayscale values to a higher extent and opening new possible applications. We detailed the procedure, and we present the experimental results, including an actual experimental video of a grayscale scene, confirming the validity of our proposal.

11.
Opt Lett ; 41(3): 599-602, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26907433

ABSTRACT

We introduce for the first time, to the best of our knowledge, a three-dimensional experimental joint transform correlator (JTC) cryptosystem allowing the encryption of information for any 3D object, and as an additional novel feature, a second 3D object plays the role of the encoding key. While the JTC architecture is normally used to process 2D data, in this work, we envisage a technique that allows the use of this architecture to protect 3D data. The encrypted object information is contained in the joint power spectrum. We register the key object as a digital off-axis Fourier hologram. The encryption procedure is done optically, while the decryption is carried out by means of a virtual optical system, allowing for flexible implementation of the proposal. We present experimental results to demonstrate the validity and feasibility of the method.

12.
Opt Express ; 22(17): 20268-77, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25321236

ABSTRACT

In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.

13.
Opt Lett ; 39(10): 3074-7, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24978277

ABSTRACT

We report, to our knowledge for the first time, the experimental implementation of a quick response (QR) code as a "container" in an optical encryption system. A joint transform correlator architecture in an interferometric configuration is chosen as the experimental scheme. As the implementation is not possible in a single step, a multiplexing procedure to encrypt the QR code of the original information is applied. Once the QR code is correctly decrypted, the speckle noise present in the recovered QR code is eliminated by a simple digital procedure. Finally, the original information is retrieved completely free of any kind of degradation after reading the QR code. Additionally, we propose and implement a new protocol in which the reception of the encrypted QR code and its decryption, the digital block processing, and the reading of the decrypted QR code are performed employing only one device (smartphone, tablet, or computer). The overall method probes to produce an outcome far more attractive to make the adoption of the technique a plausible option. Experimental results are presented to demonstrate the practicality of the proposed security system.

14.
Opt Express ; 21(5): 5373-8, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482108

ABSTRACT

We introduce for the first time the concept of an information "container" before a standard optical encrypting procedure. The "container" selected is a QR code which offers the main advantage of being tolerant to pollutant speckle noise. Besides, the QR code can be read by smartphones, a massively used device. Additionally, QR code includes another secure step to the encrypting benefits the optical methods provide. The QR is generated by means of worldwide free available software. The concept development probes that speckle noise polluting the outcomes of normal optical encrypting procedures can be avoided, then making more attractive the adoption of these techniques. Actual smartphone collected results are shown to validate our proposal.

15.
Opt Lett ; 37(14): 2895-7, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22825170

ABSTRACT

In this Letter, we present to the best of our knowledge a new all-optical technique for multiple-image encryption and multiplexing, based on fractal encrypting masks. The optical architecture is a joint transform correlator. The multiplexed encrypted data are stored in a photorefractive crystal. The fractal parameters of the key can be easily tuned to lead to a multiplexing operation without cross talk effects. Experimental results that support the potential of the method are presented.

16.
Appl Opt ; 51(11): 1822-7, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22505176

ABSTRACT

In experimental optodigital encrypting architectures, the use of a reference wave is essential. In this contribution, we present an experimental alternative to avoid the reference wave during the encrypting procedure in a joint transform correlator architecture by introducing the concept of a master key. Besides, the master key represents an additional security element for the entire protocol. In our method, the master key is holographically processed and used during the encryption process with the encrypting key. We give the mathematical description for the process in case of a single input object and then we extend it to multiple input objects. We present the experimental demonstration of the proposed method including two examples where this technique is successfully applied for several input objects.

17.
Opt Express ; 20(4): 3388-93, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418097

ABSTRACT

We present the first experimental technique to encrypt a movie under a joint transform correlator architecture. We also extend the method to multiplex several movies in a single package. We use a Mach-Zehnder interferometer to encrypt experimentally each movie. One arm of the interferometer is the joint transform correlator and the other arm is the reference wave. We include the complete description of the procedure along with experimental results supporting the proposal.

18.
Opt Express ; 20(1): 158-63, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22274339

ABSTRACT

We demonstrate a smart image-packaging optical technique that uses what we believe is a new concept to save byte space when transmitting data. The technique supports a large set of images mapped into modulated speckle patterns. Then, they are multiplexed into a single package. This operation results in a substantial decreasing of the final amount of bytes of the package with respect to the amount resulting from the addition of the images without using the method. Besides, there are no requirements on the type of images to be processed. We present results that proof the potentiality of the technique.


Subject(s)
Data Compression/methods , Image Interpretation, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Software , Feasibility Studies
19.
Opt Express ; 19(15): 13779-86, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21934738

ABSTRACT

We introduce a way to encrypt-decrypt a color dynamical phenomenon using a pure optical alternative. We split the three basic chromatic channels composing the input, and then each channel is processed through a 4f encoding method and a theta modulation applied to the each encrypted frame in every channel. All frames for a single channel are multiplexed. The same phase mask is used to encode all the information. Unlike the usual procedure we do not multiplex the three chromatic channels into a single encoding media, because we want to decrypt the information in real time. Then, we send to the decoding station the phase mask and the three packages each one containing the multiplexing of a single channel. The end user synchronizes and decodes the information contained in the separate channels. Finally, the decoding information is conveyed together to bring the decoded dynamical color phenomenon in real-time. We present material that supports our concepts.

20.
Opt Express ; 19(6): 5706-12, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21445211

ABSTRACT

We introduce for the first time the concept of an all-optical encrypted movie. This movie joints several encrypted frames corresponding to a time evolving situation employing the same encoding mask. Thanks to a multiplexing operation we compact the encrypted movie information into a single package. But the decryption of this single package implies the existence of cross-talk if we do not adequately pre-process the encoded information before multiplexing. In this regard, we introduce a grating modulation to each encoded image, and then we proceed to multiplexing. After appropriate filtering and synchronizing procedures applied to the multiplexing, we are able to decrypt and to reproduce the movie. This movie is only properly decoded when in possession of the right decoding key. The concept development is carried-out in virtual optical systems, both for the encrypting and the filtering-decrypting stages. Experimental results are shown to confirm our approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...