Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202407262, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881357

ABSTRACT

Typically catalysed by transition metals, alkene isomerisation is a powerful  methodology for preparation of internal olefins. In contrast, the use of more earth abundant main group reagents is limited to activated substrates, requiring high temperatures and excess stoichiometric amounts. Opening a new portal for progressing this field, here we report applications of bulky sodium amide NaTMP (TMP = 2,2,6,6-tetramethylpiperidide) when partnered by tridentate Lewis donor PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine) in catalytic alkene isomerisation of terminal olefins under mild reaction conditions. An array of distinct olefins could successfully be isomerised, including unactivated olefins, allylamines and allylethers, showing the high activity of this partnership. In-depth mechanistic insights provided by X-ray crystallography, real-time nuclear magnetic resonance (NMR) monitoring, and density functional theory (DFT) calculations have unveiled the crucial role of in-situ-generated TMP(H) in facilitating efficient isomerisation and the choice of alkali-metal. Additionally, theoretical studies shed light on the observed E/Z selectivity, particularly accounting for selective formation of Z-vinyl ethers. The versatility of our method is further demonstrated through isomerisation of unactivated cycloalkenes, which undergo hydrogen isotope exchange to produce deuterated compounds.

2.
Angew Chem Int Ed Engl ; 63(4): e202313556, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37801443

ABSTRACT

With their highly reactive respective C-Na and N-Na bonds, organosodium and sodium amide reagents could be viewed as obvious replacements or even superior reagents to the popular, widely utilised organolithiums. However, they have seen very limited applications in synthesis due mainly to poor solubility in common solvents and their limited stability. That notwithstanding in recent years there has been a surge of interest in bringing these sustainable metal reagents into the forefront of organometallics in synthesis. Showcasing the growth in utilisation of organosodium complexes within several areas of synthetic chemistry, this Minireview discusses promising new methods that have been recently reported with the goal of taming these powerful reagents. Special emphasis is placed on coordination and aggregation effects in these reagents which can impart profound changes in their solubility and reactivity. Differences in observed reactivity between more nucleophilic aryl and alkyl sodium reagents and the less nucleophilic but highly basic sodium amides are discussed along with current mechanistic understanding of their reactivities. Overall, this review aims to inspire growth in this exciting field of research to allow for the integration of organosodium complexes within common important synthetic transformations.

3.
Chimia (Aarau) ; 77(4): 225-229, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-38047801

ABSTRACT

Alkali-metal amides have become key reagents in synthetic chemistry, with special focus in deprotonation reactions. Despite the higher reactivity found in the heavier sodium and potassium amides, their insolubility and low stability has favoured the use of the more soluble  lithium analogues, converting them into the most used non-nucleophilic bases. Studying the coordination effects of Lewis donor molecules such as tridentate amine PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine) in combination with the sodium amide NaTMP (TMP = 2,2',6,6'-tetramethylpiperidide), we have been able to unlock the use of these reagents for the functionalisation of arenes, i.e. the deuterium incorporation by hydrogen isotope exchange and the deprotonative borylation of unactivated arenes. These findings show how sodium amides are not just a simple more sustainable replacement of their lithium counterparts, but also that they can display significantly enhanced reactivities allowing for the development of new transformations.

4.
Catal Sci Technol ; 13(17): 4919-4925, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-38013748

ABSTRACT

The preparation of compounds labelled with deuterium or tritium has become an essential tool in a range of research fields. Hydrogen isotope exchange (HIE) offers direct access to said compounds, introducing these isotopes in a late stage. Even though the field has rapidly advanced with the use of transition metal catalysis, alkali-metal bases, used as catalysts or under stoichiometric conditions, have also emerged as a viable alternative. In this minireview we describe the latest advances in the use of alkali-metal bases in HIE processes, showcasing their synthetic potential as well as current challenges in the field. It is divided in different sections based on the isotope source used, emphasizing their benefits, disadvantages and limitations. The influence on the choice of alkali-metal in these processes as well as their possible mechanistic pathways are also discussed.

6.
Chem Sci ; 14(24): 6538-6545, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37350840

ABSTRACT

The deprotonative metalation of organic molecules has become a convenient route to prepare functionalised aromatic substrates. Amongst the different metallating reagents available, sodium bases have recently emerged as a more sustainable and powerful alternative to their lithium analogues. Here we report the study of the sterically demanding electrophilic trap B(CH2SiMe3)3 for the deprotonative borylation of arenes using NaTMP (TMP = 2,2,6,6-tetramethylpiperidide) in combination with tridentate Lewis donor PMDETA (PMDETA = N,N,N',N'',N''-pentamethyldiethylenetriamine). Using anisole and benzene as model substrates, unexpected polybasic behaviour has been uncovered, which enables the formal borylation of two equivalents of the relevant arene. The combination of X-ray crystallographic and NMR monitoring studies with DFT calculations has revealed that while the first B-C bond forming process takes place via a sodiation/borylation sequence to furnish [(PMDETA)NaB(Ar)(CH2SiMe3)3] species, the second borylation step is facilitated by the formation of a borata-alkene intermediate, without the need of an external base. For non-activated benzene, it has also been found that under stoichimetric conditions the lateral sodiation of B(CH2SiMe3)3 becomes a competitive reaction pathway furnishing a novel borata-alkene complex. Showing a clear alkali-metal effect, the use of the sodium base is key to access this reactivity, while the metalation/borylation of the amine donor PMDETA is observed instead when LiTMP is used.

7.
Nat Chem ; 15(3): 299-300, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36797327
8.
Angew Chem Int Ed Engl ; 62(11): e202218498, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36636916

ABSTRACT

Deaggregating the alkyl sodium NaCH2 SiMe3 with polydentate nitrogen ligands enables the preparation and characterisation of new, hydrocarbon soluble chelated alkylsodium reagents. Equipped with significantly enhanced metalating power over their organolithium counterparts, these systems can promote controlled sodiation of weakly acidic benzylic C-H bonds from a series of toluene derivatives under mild stoichiometric conditions. This has been demonstrated through the benzylic aroylation of toluenes with Weinreb amides, that delivers a wide range of 2-arylacetophenones in good to excellent yields. Success in isolating and determining the structures of key organometallic intermediates has provided useful mechanistic insight into these new sodium-mediated transformations.

9.
J Am Chem Soc ; 144(44): 20237-20242, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36302147

ABSTRACT

Hydrogen isotope exchange (HIE) has become one of the most studied methods to prepare deuterated molecules, with the primary focus recently on metal-catalyzed C-H activation with transition metals. Here we report the use of a simple sodium amide, NaTMP (TMP = 2,2,6,6-tetramethylpiperidide), combined with tridentate Lewis donor PMDETA (N,N,N',N″,N″-pentamethyldiethylenetriamine), which is able to catalytically promote the HIE of a series nonactivated arenes under mild reaction conditions using C6D6 as the deuterium source. Establishing the potential of NaTMP for the deuteration of aromatic molecules, several nonactivated substrates such as naphthalene, diphenylacetylene, and stilbene could be deuterated under mild reaction conditions without the need of transition metals. Combining NMR studies with the isolation of key organometallic intermediates, we demonstrate that the ability of NaTMP/PMEDTA to partially metalate C6D6, with concomitant generation of TMP(D), is key to enable the catalytic deuteration.

10.
Angew Chem Int Ed Engl ; 61(26): e202204262, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35420221

ABSTRACT

Though LiTMP (TMP=2,2',6,6'-tetramethylpiperidide) is a commonly used amide, surprisingly the heavier NaTMP has hardly been utilised. Here, by mixing NaTMP with tridentate donor PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine), we provide structural, and mechanistic insights into the sodiation of non-activated arenes (e.g. anisole and benzene). While these reactions are low yielding, adding B(OiPr)3 has a profound effect, not only by intercepting the CAr -Na bond, but also by driving the metalation reaction towards quantitative formation of more stabilized sodium aryl boronates. Demonstrating its metalating power, regioselective C2-metalation/borylation of naphthalene has been accomplished contrasting with single-metal based protocols which are unselective and low yielding. Extension to other arenes allows for in situ generation of aryl boronates which can then directly engage in Suzuki-Miyaura couplings, furnishing a range of biaryls in a selective and efficient manner.

11.
Acc Chem Res ; 54(20): 3941-3952, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34586783

ABSTRACT

The ubiquity and importance of carboxylic acids and amides in peptides, pharmaceuticals, agrochemicals, and synthetic materials has challenged chemists to design de novo catalytic carboxylation and amidation protocols. They represent a powerful alternative to canonical oxidation of alcohols and aldehydes, hydrolysis of nitriles, transamidation reactions, or condensation techniques for the synthesis of these functional groups. Among various scenarios, the recent years have witnessed considerable advances in Ni-catalyzed reductive carboxylation and amidation reactions utilizing carbon dioxide and isocyanate counterparts. This Account aims to highlight the progress made in this arena with a historical perspective, with particular emphasis on the methodologies that have emanated from our laboratories without losing sight of the underlying principles by which these reactions operate, with the ultimate goal of allowing the transition from comprehension to prediction in this exciting field.Unlike the utilization of conventional polar yet highly reactive organometallic reagents in carboxylation or amidation reactions, the utilization of nickel catalysts has allowed the use of carbon dioxide and isocyanates with less reactive and less-polarized counterparts for the formations of carboxylic acids and amides. These less reactive groups include organic halides and pseudohalides (i.e., alkyl bromides and chlorides, esters, alcohols, and ammonium salts), unsaturated hydrocarbons (i.e., alkynes, styrenes, unactivated alkenes, and dienes) or even C-H bonds, where forging the targeted C-C bond at previously unfunctionalized C-H linkages was possible, thus giving access to densely functionalized compounds that would be difficult to access otherwise. The C-H functionalization includes chain-walking scenarios, where subtle changes in the ligand and reaction conditions marked the selectivity of the transformations, and reactions via a [1,4]-Ni shift, where selective carboxylation in aromatic rings could be achieved. Conceptuality and practicality aside, these transformations have even offered the possibility of modulating and dictating the site-selectivity pattern, thus providing not only new vistas when controlling the selectivity of bond-forming reactions at specific sites within the side chain but also new knowledge in retrosynthetic analysis when accessing carboxylic acids and amide backbones. Importantly, these techniques have shown to be particularly suited for the preparation of isotopically labeled molecules when using 13CO2 or even 14CO2, thus becoming a useful endeavor in the drug discovery pipeline. Although mechanistic understanding at the molecular level still constitutes the "Achilles heel" of these transformations, the recent empirical discoveries and the rapid adoption of these protocols by the community augurs well for the widespread utilization of reductive carboxylation and amidation reactions in both academic and industrial laboratories.

12.
Angew Chem Int Ed Engl ; 57(49): 15948-15982, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-29722461

ABSTRACT

Driven by the inherent synthetic potential of CO2 as an abundant, inexpensive and renewable C1 chemical feedstock, the recent years have witnessed renewed interest in devising catalytic CO2 fixations into organic matter. Although the formation of C-C bonds via catalytic CO2 fixation remained rather limited for a long period of time, a close look into the recent literature data indicates that catalytic carboxylation reactions have entered a new era of exponential growth, evolving into a mature discipline that allows for streamlining the synthesis of carboxylic acids, building blocks of utmost relevance in industrial endeavors. These strategies have generally proven broadly applicability and convenient to perform. However, substantial challenges still need to be addressed reinforcing the need to cover metal-catalyzed carboxylation area in a conceptual and concise manner, delineating the underlying new principles that are slowly emerging in this vibrant area of expertise.

13.
J Am Chem Soc ; 140(6): 2050-2053, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29376353

ABSTRACT

A site-selective catalytic incorporation of multiple CO2 molecules into 1,3-dienes en route to adipic acids is described. This protocol is characterized by its mild conditions, excellent chemo- and regioselectivity and ease of execution under CO2 (1 atm), including the use of bulk butadiene and/or isoprene feedstocks.

14.
Angew Chem Int Ed Engl ; 56(23): 6558-6562, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28464503

ABSTRACT

A switchable site-selective catalytic carboxylation of allylic alcohols has been developed in which CO2 is used with dual roles, both facilitating C-OH cleavage and as a C1 source. This protocol is characterized by its mild reaction conditions, absence of stoichiometric amounts of organometallic reagents, broad scope, and exquisite regiodivergency which can be modulated by the type of ligand employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...