Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Toxicol ; 41(5): 389-401, 2022.
Article in English | MEDLINE | ID: mdl-35672934

ABSTRACT

Bococizumab is an anti-PCSK9 monoclonal antibody that was intended for the treatment of hypercholesterolemia. After reviewing the 6-month rat toxicity study data, in which there was a low spontaneous tumor incidence, unrelated to bococizumab administration, the U.S. FDA granted a carcinogenicity waiver request based on a weight-of-evidence assessment of low carcinogenic risk. Subsequently, after reviewing 6-month rat toxicity study data from another anti-PCSK9 antibody, RN317, with a similar low tumor incidence (unrelated to RN317), the U.S. FDA rescinded the bococizumab carcinogenicity study waiver and requested a full 2-year rat carcinogenicity study be conducted. The resulting 2-year carcinogenicity study demonstrated no bococizumab-related increase in tumors, confirming the weight-of-evidence evaluation and alleviating concerns regarding the carcinogenic potential. Here we report the scientific and regulatory background that led to the request for a rat carcinogenicity study, the feedback on the design of the carcinogenicity study, and the results from this study which affirmed the original weight-of-evidence assessment of low carcinogenic risk.


Subject(s)
Carcinogens , Hypercholesterolemia , Animals , Antibodies, Monoclonal/toxicity , Carcinogenicity Tests , Carcinogens/toxicity , Cholesterol, LDL , Proprotein Convertase 9 , Rats
2.
Mol Cancer Ther ; 17(12): 2530-2542, 2018 12.
Article in English | MEDLINE | ID: mdl-30232146

ABSTRACT

Tumors use indoleamine 2,3-dioxygenase-1 (IDO1) as a major mechanism to induce an immunosuppressive microenvironment. IDO1 expression is upregulated in many cancers and considered to be a resistance mechanism to immune checkpoint therapies. IDO1 is induced in response to inflammatory stimuli such as IFNγ and promotes immune tolerance by depleting tryptophan and producing tryptophan catabolites, including kynurenine, in the tumor microenvironment. This leads to effector T-cell anergy and enhanced Treg function through upregulation of FoxP3. As a nexus for the induction of key immunosuppressive mechanisms, IDO1 represents an important immunotherapeutic target in oncology. Here, we report the identification and characterization of the novel selective, orally bioavailable IDO1 inhibitor EOS200271/PF-06840003. It reversed IDO1-induced T-cell anergy in vitro In mice carrying syngeneic tumor grafts, PF-06840003 reduced intratumoral kynurenine levels by over 80% and inhibited tumor growth both in monotherapy and, with an increased efficacy, in combination with antibodies blocking the immune checkpoint ligand PD-L1. We demonstrate that anti-PD-L1 therapy results in increased IDO1 metabolic activity thereby providing additional mechanistic rationale for combining PD-(L)1 blockade with IDO1 inhibition in cancer immunotherapies. Supported by these preclinical data and favorable predicted human pharmacokinetic properties of PF-06840003, a phase I open-label, multicenter clinical study (NCT02764151) has been initiated.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Biocatalysis , Enzyme Inhibitors/pharmacology , Immunotherapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacology , Succinimides/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/pharmacology , B7-H1 Antigen/metabolism , CTLA-4 Antigen/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/metabolism , Kynurenine/blood , Lymphocytes, Tumor-Infiltrating/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL , Stereoisomerism , Substrate Specificity/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects
3.
J Med Chem ; 60(23): 9617-9629, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29111717

ABSTRACT

Tumors use tryptophan-catabolizing enzymes such as indoleamine 2,3-dioxygenase (IDO-1) to induce an immunosuppressive environment. IDO-1 is induced in response to inflammatory stimuli and promotes immune tolerance through effector T-cell anergy and enhanced Treg function. As such, IDO-1 is a nexus for the induction of a key immunosuppressive mechanism and represents an important immunotherapeutic target in oncology. Starting from HTS hit 5, IDO-1 inhibitor 6 (EOS200271/PF-06840003) has been developed. The structure-activity relationship around 6 is described and rationalized using the X-ray crystal structure of 6 bound to human IDO-1, which shows that 6, differently from most of the IDO-1 inhibitors described so far, does not bind to the heme iron atom and has a novel binding mode. Clinical candidate 6 shows good potency in an IDO-1 human whole blood assay and also shows a very favorable ADME profile leading to favorable predicted human pharmacokinetic properties, including a predicted half-life of 16-19 h.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacology , Succinimides/pharmacology , Animals , Cell Line , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoles/chemistry , Indoles/pharmacokinetics , Macaca fascicularis , Male , Mice , Molecular Docking Simulation , Rats , Structure-Activity Relationship , Succinimides/chemistry , Succinimides/pharmacokinetics
4.
Mol Cancer Ther ; 11(10): 2274-83, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22752429

ABSTRACT

Clinical trials of selective RAF inhibitors in patients with melanoma tumors harboring activated BRAFV600E have produced very promising results, and a RAF inhibitor has been approved for treatment of advanced melanoma. However, about a third of patients developed resectable skin tumors during the course of trials. This is likely related to observations that RAF inhibitors activate extracellular signal-regulated kinase (ERK) signaling, stimulate proliferation, and induce epithelial hyperplasia in preclinical models. Because these findings raise safety concerns about RAF inhibitor development, we further investigated the underlying mechanisms. We showed that the RAF inhibitor PF-04880594 induces ERK phosphorylation and RAF dimerization in those epithelial tissues that undergo hyperplasia. Hyperplasia and ERK hyperphosphorylation are prevented by treatment with the mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor PD-0325901 at exposures that extrapolate to clinically well-tolerated doses. To facilitate mechanistic and toxicologic studies, we developed a three-dimensional cell culture model of epithelial layering that recapitulated the RAF inhibitor-induced hyperplasia and reversal by MEK inhibitor in vitro. We also showed that PF-04880594 stimulates production of the inflammatory cytokine interleukin 8 in HL-60 cells, suggesting a possible mechanism for the skin flushing observed in dogs. The complete inhibition of hyperplasia by MEK inhibitor in epithelial tissues does not seem to reduce RAF inhibitor efficacy and, in fact, allows doubling of the PF-04880594 dose without toxicity usually associated with such doses. These findings indicated that combination treatment with MEK inhibitors might greatly increase the safety and therapeutic index of RAF inhibitors for the treatment of melanoma and other cancers.


Subject(s)
Benzamides/administration & dosage , Benzamides/pharmacology , Diphenylamine/analogs & derivatives , Epithelium/pathology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Animals , Benzamides/chemistry , Diphenylamine/administration & dosage , Diphenylamine/chemistry , Diphenylamine/pharmacology , Dogs , Dose-Response Relationship, Drug , Epidermis/drug effects , Epidermis/pathology , Epithelium/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , HL-60 Cells , Humans , Hyperplasia , Interleukin-8/metabolism , Mice , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Multimerization/drug effects , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-raf/metabolism , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...