Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 86(4): 909-914, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37023389

ABSTRACT

Cannabichromene (CBC, 1a) occurs in Cannabis (Cannabis sativa) as a scalemate having a composition that is strain-dependent in terms of both enantiomeric excess and enantiomeric dominance. In the present work, the chirality of CBC (1a), a noncrystalline compound, was shown not to be significantly affected by standard conditions of isolation and purification, and enantiomeric self-disproportionation effects were minimized by carrying out the chiral analysis on crude fractions rather than on purified products. A genetic basis for the different enantiomeric state of CBC in Cannabis therefore seems to exist, implying that the chirality status of natural CBC (1a) in the plant is associated with the differential expression of CBCA-synthase isoforms and/or of associated directing proteins with antipodal enantiospecificity. The biological profile of both enantiomers of CBC should therefore be investigated independently to assess the contribution of this compound to the activity of Cannabis preparations.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Cannabis/chemistry , Cannabinoids/chemistry , Hallucinogens/metabolism , Cannabinoid Receptor Agonists
2.
Front Chem ; 10: 1000765, 2022.
Article in English | MEDLINE | ID: mdl-36465859

ABSTRACT

The plight of antimicrobial resistance continues to limit the availability of antibiotic treatment effective in combating resistant bacterial infections. Despite efforts made to rectify this issue and minimise its effects on both patients and the wider community, progress in this area remains minimal. Here, we de-novo designed a peptide named KDEON WK-11, building on previous work establishing effective residues and structures active in distinguished antimicrobial peptides such as lactoferrin. We assessed its antimicrobial activity against an array of bacterial strains and identified its most potent effect, against Pseudomonas aeruginosa with an MIC value of 3.12 µM, lower than its counterparts developed with similar residues and chain lengths. We then determined its anti-biofilm properties, potential mechanism of action and in vitro cytotoxicity. We identified that KDEON WK-11 had a broad range of antimicrobial activity and specific capabilities to fight Pseudomonas aeruginosa with low in vitro cytotoxicity and promising potential to express anti-lipopolysaccharide qualities, which could be exploited to expand its properties into an anti-sepsis agent.

3.
Foods ; 11(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36429250

ABSTRACT

In this study, the effect of several agronomical practices on the chemical composition of hemp inflorescences, a potential novel food that needs to be further studied, was observed. Here, the case study of inflorescences from Ferimon cultivars is discussed and submitted to different agronomical practices (irrigation and fertilizers) in different years, and the inflorescences harvested in different periods were analyzed by a multimethodological approach. Targeted and untargeted methodologies allowed cannabinoids, total phenolic content, metabolite profile and antioxidant activity to be determined. The biomass and inflorescence yields were also reported. The whole data set was submitted to ANOVA-simultaneous component analysis. The statistic results allowed us to observe that irrigation was responsible for the (-)-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) increment. THC, cannabichromene (CBC), cannabigerol (CBG), succinate, and fructose resulted as higher in full female flowering than in the period of seed maturity. On the other hand, nitrogen supplementation led to an increase of iso-leucine, valine, and threonine. The obtained results underlined both the potential food application of hemp inflorescences, due to the rich chemical profile, and the strong effect of agronomical practices, mainly irrigation and harvesting, on the qualitative and quantitative characteristics of its metabolite profile.

4.
Molecules ; 27(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364405

ABSTRACT

The plants of the Moraceae family are producers of a great variety of polyphenolic natural products. Among these, the Diels-Alder type adducts (DAAs) are endowed with a unique cyclohexene scaffold, since they are biosynthesized from [4+2] cycloaddition of different polyphenolic precursors such as chalcones and dehydroprenyl polyphenols. To date, more than 150 DAAs have been isolated and characterized from Moraceous and related plants. The main source of DAAs is the mulberry root bark, also known as "Sang-Bai-Pi" in Traditional Chinese Medicine, but they have also been isolated from root bark, stem barks, roots, stems or twigs, leaves, and callus cultures of Moraceous and other related plants. Since 1980, many biological activities of DAAs have been identified, including anti-HIV, antimicrobial, anti-inflammatory, and anticancer ones. For these reasons, natural DAAs have been intensively investigated, and a lot of efforts have been made to study their biosynthesis and to establish practical synthetic access. In this review, we summarized all the updated knowledge on biosynthesis, chemoenzymatic synthesis, racemic and enantioselective total synthesis, and biological activity of natural DAAs from Moraceous and related plants.


Subject(s)
Chalcones , Morus , Polyphenols , Medicine, Chinese Traditional , Antioxidants , Anti-Inflammatory Agents
5.
Antibiotics (Basel) ; 11(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35052961

ABSTRACT

In today's post-antibiotic era, the search for new antimicrobial compounds is of major importance and nature represents one of the primary sources of bioactive molecules. In this work, through a cheminformatics approach, we clustered an in-house library of natural products and their derivatives based on a combination of fingerprints and substructure search. We identified the prenylated emodine-type anthranoid ferruginin A as a novel antimicrobial compound. We tested its ability to inhibit and kill a panel of Gram-positive and Gram-negative bacteria, and compared its activity with that of two analogues, vismione B and ferruanthrone. Furthermore, the capability of these three anthranoids to disrupt staphylococcal biofilm was investigated, as well as their effect on the viability of human keratinocytes. Ferruginin A showed a potent activity against both the planktonic and biofilm forms of Gram-positive bacteria (i.e., Staphylococcus aureus and S. epidermidis) and had the best therapeutic index compared to vismione B and ferruanthrone. In conclusion, ferruginin A represents a promising scaffold for the further development of valuable antimicrobial agents.

6.
Chemphyschem ; 21(16): 1775-1787, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32519414

ABSTRACT

Viedma deracemization is based on solution phase racemization, dissolution of racemic or scalemic conglomerates and crystal growth through autocatalytic cluster formation. With rate limiting racemization, its acceleration by appropriate catalysts may result in speeding up deracemization. A conglomerate-forming chiral compound may principally racemize directly, or via reverse of its formation reaction. For a hydrazine derivative, we investigated available racemization pathways in presence of pyrrolidine or thiourea amine as base catalysts: via Mannich or aza-Michael reaction steps and their reverse, or by enolization. Racemization by enolization was computationally found to dominate, both under water-free conditions and in presence of water, involving a multitude of different pathways. Faster racemization in presence of water resulted indeed in more rapid deracemization, when the base was pyrrolidine. Under water-free conditions, the role of water as enolization catalyst is assumed by chiral hydrazine itself - in autocatalytic racemization and in which both reactant and product are catalysts.

7.
Chemistry ; 26(4): 839-844, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31663650

ABSTRACT

Viedma ripening is a deracemization process that has been used to deracemize a range of chiral molecules. The method has two major requirements: the compound needs to crystallize as a conglomerate and it needs to be racemizable under the crystallization conditions. Although conglomerate formation can be induced in different ways, the number of racemization methods is still rather limited. To extend the scope of Viedma ripening, in the present research we applied UV-light-induced racemization in a Viedma ripening process, and report the successful deracemization of a BINOL derivative crystallizing as a conglomerate. Irradiation by UV light activates the target compound in combination with an organic base, required to promote the excited-state proton transfer (ESPT), leading thereafter to racemization. This offers a new tool towards the development of Viedma ripening processes, by using a cheap and "green" catalytic source like UV light to racemize suitable chiral compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...