Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768370

ABSTRACT

Prostate cancer (PCa) is the most common cancer in men. The androgen receptor (AR) has a pivotal role in the pathogenesis and progression of PCa. Many therapies targeting AR signaling have been developed over the years. AR signaling inhibitors (ARSIs), including androgen synthesis inhibitors and AR antagonists, have proven to be effective in castration-sensitive PCa (CSPC) and improve survival, but men with castration-resistant PCa (CRPC) continue to have a poor prognosis. Despite a good initial response, drug resistance develops in almost all patients with metastatic CRPC, and ARSIs are no longer effective. Several mechanisms confer resistance to ARSI and include AR mutations but also hyperactivation of other pathways, such as PI3K/AKT/mTOR. This pathway controls key cellular processes, including proliferation and tumor progression, and it is the most frequently deregulated pathway in human cancers. A significant interaction between AR and the PI3K/AKT/mTOR signaling pathway has been shown in PCa. This review centers on the current scene of different AR and PI3K signaling pathway inhibitors, either as monotherapy or in combination treatments in PCa, and the treatment outcomes involved in both preclinical and clinical trials. A PubMed-based literature search was conducted up to November 2022. The most relevant and recent articles were selected to provide essential information and current evidence on the crosstalk between AR and the PI3K signaling pathways. The ClinicalTrials.gov registry was used to report information about clinical studies and their results using the Advanced research tool, filtering for disease and target.


Subject(s)
Phosphatidylinositol 3-Kinases , Prostatic Neoplasms, Castration-Resistant , Proto-Oncogene Proteins c-akt , Receptors, Androgen , Humans , Male , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Sci Rep ; 11(1): 19033, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561481

ABSTRACT

Keratinocytes, the main cell type of the skin, are one of the most exposed cells to environmental factors, providing a first defence barrier for the host and actively participating in immune response. In fact, keratinocytes express pattern recognition receptors that interact with pathogen associated molecular patterns and damage associated molecular patterns, leading to the production of cytokines and chemokines, including interleukin (IL)-6. Herein, we investigated whether mechanical energy transported by low intensity ultrasound (US) could generate a mechanical stress able to induce the release of inflammatory cytokine such IL-6 in the human keratinocyte cell line, HaCaT. The extensive clinical application of US in both diagnosis and therapy suggests the need to better understand the related biological effects. Our results point out that US promotes the overexpression and secretion of IL-6, associated with the activation of nuclear factor-κB (NF-κB). Furthermore, we observed a reduced cell viability dependent on exposure parameters together with alterations in membrane permeability, paving the way for further investigating the molecular mechanisms related to US exposure.


Subject(s)
Gene Expression/radiation effects , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Keratinocytes/metabolism , Ultrasonic Waves/adverse effects , Cell Membrane Permeability/radiation effects , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , HaCaT Cells , Humans , Interleukin-6/genetics , NF-kappa B/metabolism , Stress, Mechanical
3.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204738

ABSTRACT

Nocodazole is an antineoplastic agent that exerts its effects by depolymerizing microtubules. Herein we report a structural analog of nocodazole, a (1H-pyrrol-1-yl)methyl-1H-benzoimidazole carbamate ester derivative, named RDS 60. We evaluated the antineoplastic properties of RDS 60 in two human head and neck squamous cell carcinoma (HNSCC) cell lines and we found that this compound significantly inhibited replication of both HNSCC cell lines without inducing any important cytotoxic effect on human dermal fibroblasts and human keratinocytes. The treatment of HNSCC cell lines with 1 µM RDS 60 for 24 h stopped development of normal bipolar mitotic spindles and, at the same time, blocked the cell cycle in G2/M phase together with cytoplasmic accumulation of cyclin B1. Consequently, treatment with 2 µM RDS 60 for 24 h induced the activation of apoptosis in both HNSCC cell lines. Additionally, RDS 60 was able to reverse the epithelial-mesenchymal transition and to inhibit cell migration and extracellular matrix infiltration of both HNSCC cell lines. The reported results demonstrate that this compound has a potent effect in blocking cell cycle, inducing apoptosis and inhibiting cell motility and stromal invasion of HNSCC cell lines. Therefore, the ability of RDS 60 to attenuate the malignancy of tumor cells suggests its potential role as an interesting and powerful tool for new approaches in treating HNSCC.

4.
J Vis Exp ; (169)2021 03 14.
Article in English | MEDLINE | ID: mdl-33779605

ABSTRACT

Significant improvement of phase-change perfluorocarbon microdroplets (MDs) in the vast theranostic scenario passes through the optimization of the MDs composition with respect to synthesis efficiency, stability, and drug delivery capability. To this aim, decafluoropentane (DFP) MDs stabilized by a shell of dimethyldioctadecylammonium bromide (DDAB) cationic surfactant were designed. A high concentration of DDAB-MDs was readily obtained within a few seconds by pulsed high-power insonation, resulting in low polydisperse 1 µm size droplets. Highly positive ζ-potential, together with a long, saturated hydrocarbon chains of the DDAB shell, are key factors to stabilize the droplet and the drug cargo therein. The high affinity of the DDAB shell with cell plasma membrane allows for localized chemotherapeutics delivery by increasing the drug concentration at the tumor cell interface and boosting the uptake. This would turn DDAB-MDs into a relevant drug delivery tool exhibiting high antitumor activity at very low drug doses. In this work, the efficacy of such an approach is shown to dramatically improve the effect of doxorubicin against 3D spheroids of mammalian tumor cells, MDA-MB-231. The use of three-dimensional (3D) cell cultures developed in the form of multicellular tumor spheroids (i.e., densely packed cells in a spherical shape) has numerous advantages compared to 2D cell cultures: in addition to have the potential to bridge the gap between conventional in vitro studies and animal testing, it will improve the ability to perform more predictive in vitro screening assays for preclinical drug development or evaluate the potential of off-label drugs and new co-targeting strategies.


Subject(s)
Cell Culture Techniques/methods , Drug Delivery Systems/methods , Quaternary Ammonium Compounds/metabolism , Animals , Humans
5.
Oncology ; 99(4): 251-255, 2021.
Article in English | MEDLINE | ID: mdl-33461196

ABSTRACT

BACKGROUND: Androgen receptor splice variant V7 (AR-V7) was recently detected in circulating tumor cells of castration-resistant prostate cancer (PC) patients and its expression correlated with resistance to new-generation androgen signaling inhibitors. OBJECTIVES: We retrospectively analyzed whether AR-V7 expression was detectable on radical prostatectomy (RP) specimens of untreated nonmetastatic PC cases, and whether it could be associated with progression after surgery. METHOD: The expression of AR-V7 and AR-FL (full length) was separately evaluated by immunohistochemistry using a streptavidin-biotin-peroxidase system with 2 anti-AR-V7 and anti-AR-FL rabbit monoclonal antibodies. RESULTS: 56 PC cases, classified by their clinical risk, were analyzed. Positive expression was found in 24/32 cases in the high-risk group, 4/13 in the intermediate-risk group, and only 2/11 in the low-risk group. We found a significant correlation between AR-V7 positivity and both risk classification (p < 0.001) and progression after surgery (p < 0.001). CONCLUSIONS: In our population of untreated nonmetastatic PC, AR-V7 is detectable by immunohistochemistry in more than 50% of cases. At this early stage, AR-V7 positivity is associated with risk classification and it can predict progression after surgery.


Subject(s)
Disease Progression , Prostatectomy/methods , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/surgery , Receptors, Androgen/metabolism , Aged , Biomarkers, Tumor/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Prognosis , Progression-Free Survival , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms/metabolism , Receptors, Androgen/genetics , Retrospective Studies , Risk
6.
J Colloid Interface Sci ; 578: 758-767, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32574909

ABSTRACT

Adhesion is a key process when ultrasound contrast agents, i.e. microbubbles, approach pathological tissues. A way to accomplish tumour targeting is to tether surface engineered microbubbles to endothelial cells of the up-regulated vascularization of cancer tissues. This can be achieved by coupling the microbubbles surface with the Arginine-Glycine-Aspartate, RGD, sequence. Such molecule interacts with the integrin receptors placed on the endothelial cells. Stability and trajectories of RGD modified lipid shelled MBs have been analysed in vitro using microchannels coated with human umbilical vein endothelial cells, HUVEC. In the microchannels realistic conditions, close to the physiological ones, were reproduced replicating shear rate, roughness comparable to the endothelium and channel size mimicking the postcapillary venules. In these conditions, the analysis of the trajectories close to the walls highlights a substantial difference between the modified MBs and the plain ones. Moreover, MBs adhesion has dynamic features recalling the motion of neutrophils engaged near the substrate such as rolling, translations and transient detachments. These findings are useful for the optimization of in vivo imaging and targeting functions.


Subject(s)
Endothelial Cells , Microbubbles , Adhesives , Contrast Media , Humans , Ultrasonography
7.
Colloids Surf B Biointerfaces ; 180: 495-502, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31103709

ABSTRACT

Doxorubicin (DOX) is commonly used to treat several tumor types, but its severe side effects, primarily cardiotoxicity, represent a major limitation for its use in clinical settings. In this study we developed and characterized biodegradable and stable poly(D,L-lactic-co-glycolic) acid (PLGA) submicrocarriers employing an osmosis-based patented methodology, which allowed to optimize the drug loading efficiency up to 99%. Proceeding from this, we evaluated on MCF-7, a human breast cancer cell line, the ability of PLGA to promote the internalization of DOX and to improve its cytotoxicity in vitro. We found that the in vitro uptake efficiency is dramatically increased when DOX is loaded within PLGA colloidal carriers, which adhere to the cell membrane behaving as an efficient drug reservoir. In fact, the particles provide a diffusion-driven, sustained release of DOX across the cell membrane, resulting in high drug concentration. Accordingly, the cytotoxic analysis clearly showed that DOX-loaded PLGA exhibit a lower 50% inhibitory concentration than free DOX. The decay time of cell viability was successfully compared with DOX diffusion time constant from PLGA. The overall in vitro results highlight the potential of DOX-loaded PLGA particles to be employed as vectors with improved antitumor efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cell Death/drug effects , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Liberation , Fluorescence , Hemolysis/drug effects , Humans , Kinetics , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...