Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 124: 287-300, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23871969

ABSTRACT

The Fernald Feed Materials Production Center (FFMPC) was established in 1951 to process natural uranium (U) ore, enriched uranium (EU) and depleted uranium (DU). This study tests the utility of U isotopic ratios in sediment cores and lichens as indicators of the aerial extent, degree and timing of anthropogenic U contamination, using the FFMPC as a test case. An 80-cm-long sediment core was extracted from an impoundment located approximately 6.7 km southwest of the FFMPC. Elemental concentrations of thorium (2.7-6.2 µg g(-1)) and U (0.33-1.33 µg g(-1)) as well as major and minor U isotopes were analyzed in the core. The lack of measurable (137)Cs in the deepest sample as well as a natural (235)U/(238)U signature and no measurable (236)U, are consistent with pre-FFMPC activity. Anomalously elevated U with respect to Th concentrations occur in seven consecutive samples immediately above the base of the core (62-76 cm depth). Samples with elevated U concentrations also show variable (235)U/(238)U (0.00645-0.00748), and all contain measurable (236)U ((236)U/(238)U = 2.1 × 10(-6)-3.6 × 10(-5)). Correspondence between the known releases of U dust from the FFMPC through time and variations in sediment core U concentrations, (235)U/(238)U and (236)U/(238)U ratios provide evidence for distinct releases of both DU and EU. Furthermore, these relationships demonstrate that the sediment core serves as a robust archive of past environmental U contamination events. Samples in the upper 40 cm display natural (235)U/(238)U, but measurable (236)U/(238)U ((236)U/(238)U = 5.68 × 10(-6)-1.43 × 10(-5)), further indicating the continued presence of anthropogenic U in present-day sediment. Three local lichen samples were also analyzed, and all display either EU or DU signatures coupled with elevated (236)U/(238)U, recording airborne U contamination from the FFMPC.


Subject(s)
Lichens/chemistry , Radioactive Pollutants/analysis , Uranium/analysis , Geologic Sediments/analysis , Ohio , Radiation Monitoring/methods , Radioactive Pollutants/chemistry , Uranium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...