Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Proc Natl Acad Sci U S A ; 118(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33443186

ABSTRACT

Ordinary ice has a proton-disordered phase which is kinetically metastable, unable to reach, spontaneously, the ferroelectric (FE) ground state at low temperature where a residual Pauling entropy persists. Upon light doping with KOH at low temperature, the transition to FE ice takes place, but its microscopic mechanism still needs clarification. We introduce a lattice model based on dipolar interactions plus a competing, frustrating term that enforces the ice rule (IR). In the absence of IR-breaking defects, standard Monte Carlo (MC) simulation leaves this ice model stuck in a state of disordered proton ring configurations with the correct Pauling entropy. A replica exchange accelerated MC sampling strategy succeeds, without open path moves, interfaces, or off-lattice configurations, in equilibrating this defect-free ice, reaching its low-temperature FE order through a well-defined first-order phase transition. When proton vacancies mimicking the KOH impurities are planted into the IR-conserving lattice, they enable standard MC simulation to work, revealing the kinetics of evolution of ice from proton disorder to partial FE order below the transition temperature. Replacing ordinary nucleation, each impurity opens up a proton ring generating a linear string, an actual FE hydrogen bond wire that expands with time. Reminiscent of those described for spin ice, these impurity-induced strings are proposed to exist in doped water ice too, where IRs are even stronger. The emerging mechanism yields a dependence of the long-time FE order fraction upon dopant concentration, and upon quenching temperature, that compares favorably with that known in real-life KOH doped ice.

2.
Nanoscale ; 11(37): 17396-17400, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31528907

ABSTRACT

The lifting, peeling and exfoliation of physisorbed ribbons (or flakes) of 2D material such as graphene off a solid surface are common and important manoeuvres in nanoscience. The feature that makes this case peculiar is the structural lubricity generally realized by stiff 2D material contacts. We model theoretically the mechanical peeling of a nanoribbon of graphene as realized by the tip-forced lifting of one of its extremes off a flat crystal surface. The evolution of shape, energy, local curvature and body advancement are ideally expected to follow a succession of regimes: (A) initial prying, (B) peeling with stretching but without sliding (stripping), (C) peeling with sliding, (D) liftoff. In the case where in addition the substrate surface corrugation is small or negligible, then (B) disappears, and we find that the (A)-(C) transition becomes universal, analytical and sharp, determined by the interplay between bending rigidity and adsorption energy. This general two-stage peeling transition is identified as a sharp crossover in published data of graphene nanoribbons pulled off an atomic-scale Au(111) substrate.

3.
Nanoscale ; 10(4): 2073-2080, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29323381

ABSTRACT

Graphene nanoribbons (GNRs) physisorbed on a Au(111) surface can be picked up, lifted at one end, and made to slide by means of the tip of an atomic-force microscope. The dynamic transition from smooth sliding to multiple stick-slip regimes, the pushing/pulling force asymmetry, the presence of pinning, and its origin are real frictional processes in a nutshell, in need of a theoretical description. To this purpose, we conduct classical simulations of frictional manipulations of a 30 nm-long GNR, one end of which is pushed or pulled horizontally while held at different heights above the Au surface. These simulations allow us to clarify theoretically the emergence of stick-slip originating from the short 1D edges rather than the 2D "bulk", the role of adhesion, of lifting, and of graphene bending elasticity in determining the GNR sliding friction. The understanding obtained in this simple context is of additional value for more general cases.

4.
J Chem Phys ; 147(15): 152721, 2017 Oct 21.
Article in English | MEDLINE | ID: mdl-29055312

ABSTRACT

Non-equilibrium Markov State Modeling (MSM) has recently been proposed by Pellegrini et al. [Phys. Rev. E 94, 053001 (2016)] as a possible route to construct a physical theory of sliding friction from a long steady state atomistic simulation: the approach builds a small set of collective variables, which obey a transition-matrix-based equation of motion, faithfully describing the slow motions of the system. A crucial question is whether this approach can be extended from the original 1D small size demo to larger and more realistic size systems, without an inordinate increase of the number and complexity of the collective variables. Here we present a direct application of the MSM scheme to the sliding of an island made of over 1000 harmonically bound particles over a 2D periodic potential. Based on a totally unprejudiced phase space metric and without requiring any special doctoring, we find that here too the scheme allows extracting a very small number of slow variables, necessary and sufficient to describe the dynamics of island sliding.

5.
Phys Rev E ; 94(5-1): 053001, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967165

ABSTRACT

Markov state modeling (MSM) has recently emerged as one of the key techniques for the discovery of collective variables and the analysis of rare events in molecular simulations. In particular in biochemistry this approach is successfully exploited to find the metastable states of complex systems and their evolution in thermal equilibrium, including rare events, such as a protein undergoing folding. The physics of sliding friction and its atomistic simulations under external forces constitute a nonequilibrium field where relevant variables are in principle unknown and where a proper theory describing violent and rare events such as stick slip is still lacking. Here we show that MSM can be extended to the study of nonequilibrium phenomena and in particular friction. The approach is benchmarked on the Frenkel-Kontorova model, used here as a test system whose properties are well established. We demonstrate that the method allows the least prejudiced identification of a minimal basis of natural microscopic variables necessary for the description of the forced dynamics of sliding, through their probabilistic evolution. The steps necessary for the application to realistic frictional systems are highlighted.

6.
Nanoscale ; 8(40): 17483-17488, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27714176

ABSTRACT

The quantum physics of ions and electrons behind low-energy spectra of strongly correlated molecular conductors, superconductors and Mott insulators is poorly known, yet fascinating especially in orbitally degenerate cases. The fulleride insulator Cs3C60 (A15), one such system, exhibits infrared (IR) spectra with low temperature peak features and splittings suggestive of static Jahn-Teller distortions with a breakdown of orbital symmetry in the molecular site. That is puzzling, since there is no detectable static distortion, and because the features and splittings disappear upon modest heating, which they should not. Taking advantage of the Mott-induced collapse of electronic wavefunctions from lattice-extended to nanoscale localized inside a caged molecular site, we show that the unbroken spin and orbital symmetry of the ion multiplets explains the IR spectrum without adjustable parameters. This demonstrates the importance of a fully quantum treatment of nuclear positions and orbital momenta in the Mott insulator sites, dynamically but not statically distorted. The observed demise of these features with temperature is explained by the thermal population of a multiplet term whose nuclear positions are essentially undistorted, but whose energy is very low-lying. That term is in fact a scaled-down orbital excitation analogous to that of other Mott insulators, with the same spin 1/2 as the ground state, but with a larger orbital momentum of two instead of one.

7.
J Phys Condens Matter ; 28(29): 293001, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27249652

ABSTRACT

The nonlinear dynamics associated with sliding friction forms a broad interdisciplinary research field that involves complex dynamical processes and patterns covering a broad range of time and length scales. Progress in experimental techniques and computational resources has stimulated the development of more refined and accurate mathematical and numerical models, capable of capturing many of the essentially nonlinear phenomena involved in friction.

8.
J Chem Phys ; 143(14): 144703, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26472391

ABSTRACT

Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

9.
Phys Rev Lett ; 115(4): 046101, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26252695

ABSTRACT

The critical fluctuations at second order structural transitions in a bulk crystal may affect the dissipation of mechanical probes even if completely external to the crystal surface. Here, we show that noncontact force microscope dissipation bears clear evidence of the antiferrodistortive phase transition of SrTiO_{3}, known for a long time to exhibit a unique, extremely narrow neutron scattering "central peak." The noncontact geometry suggests a central peak linear response coupling connected with strain. The detailed temperature dependence reveals for the first time the intrinsic central peak width of order 80 kHz, 2 orders of magnitude below the established neutron upper bound.

10.
J Chem Phys ; 142(6): 064707, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25681935

ABSTRACT

Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.

11.
Phys Rev Lett ; 111(4): 047201, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23931401

ABSTRACT

A simple device of three laterally coupled quantum dots, the central one contacted by metal leads, provides a realization of the ferromagnetic Kondo model, which is characterized by interesting properties like a nonanalytic inverted zero-bias anomaly and an extreme sensitivity to a magnetic field. Tuning the gate voltages of the lateral dots allows us to study the transition from a ferromagnetic to antiferromagnetic Kondo effect, a simple case of a Berezinskii-Kosterlitz-Thouless transition. We model the device by three coupled Anderson impurities that we study by numerical renormalization group. We calculate the single-particle spectral function of the central dot, which at zero frequency is proportional to the zero-bias conductance, across the transition, both in the absence and in the presence of a magnetic field.

12.
Phys Rev Lett ; 108(20): 206807, 2012 May 18.
Article in English | MEDLINE | ID: mdl-23003169

ABSTRACT

Transition metal impurities will yield zero-bias anomalies in the conductance of well contacted metallic carbon nanotubes, but Kondo temperatures and geometry dependences have not been anticipated so far. Applying the density functional plus numerical renormalization group approach of Lucignano et al. to Co and Fe impurities in (4,4) and (8,8) nanotubes, we discover a huge difference of behavior between outside versus inside adsorption of the impurity. The predicted Kondo temperatures and zero-bias anomalies, tiny outside the nanotube, turn large and strongly radius dependent inside, owing to a change of symmetry of the magnetic orbital. Observation of this Kondo effect should open the way to a host of future experiments.

13.
Phys Rev Lett ; 106(25): 256102, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21770656

ABSTRACT

The effects of a displacive structural phase transition on sliding friction are in principle accessible to nanoscale tools such as atomic force microscopy, yet they are still surprisingly unexplored. We present model simulations demonstrating and clarifying the mechanism and potential impact of these effects. A structural order parameter inside the material will yield a contribution to stick-slip friction that is nonmonotonic as temperature crosses the phase transition, peaking at the critical T(c) where critical fluctuations are strongest, and the sliding-induced order-parameter local flips from one value to another more numerous. Accordingly, the friction below T(c) is larger when the order-parameter orientation is such that flips are more effectively triggered by the slider. The observability of these effects and their use for friction control are discussed, for future application to sliding on the surface of and ferro- or antiferrodistortive materials.

14.
Nat Commun ; 2: 236, 2011.
Article in English | MEDLINE | ID: mdl-21407202

ABSTRACT

Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices or clusters, depending on the trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, through, for example, an electric field, the trapped ion chains over a corrugated potential. Unlike infinite chains, in which the theoretically predicted Aubry transition to free sliding may take place, trapped chains are always pinned. Yet, a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, found for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional friction phenomena could thus become accessible in future cold ion tribology.


Subject(s)
Ions/analysis , Molecular Dynamics Simulation , Chemical Phenomena , Cold Temperature , Friction , Ions/chemistry , Nanostructures/analysis , Nanostructures/chemistry , Physics , Static Electricity
15.
Phys Rev Lett ; 102(12): 125502, 2009 Mar 27.
Article in English | MEDLINE | ID: mdl-19392294

ABSTRACT

We discover in simulations of sliding coaxial nanotubes an unanticipated example of dynamical symmetry breaking taking place at the nanoscale. While both nanotubes are perfectly left-right symmetric and nonchiral, a nonzero angular momentum of phonon origin appears spontaneously at a series of critical sliding velocities, in correspondence with large peaks of the sliding friction. The nonlinear equations governing this phenomenon resemble the rotational instability of a forced string. However, several new elements, exquisitely "nano" appear here, with the crucial involvement of umklapp and of sliding nanofriction.


Subject(s)
Models, Chemical , Nanotubes, Carbon/chemistry , Computer Simulation , Nonlinear Dynamics , Stereoisomerism , Thermodynamics
16.
Nat Nanotechnol ; 3(1): 22-5, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18654445

ABSTRACT

Whenever a nanosystem such as an adatom, a cluster or a nanowire spontaneously magnetizes, a crucial parameter is its magnetic anisotropy, the intrinsic preference of magnetization to lie along an easy axis. Anisotropy is important in nanosystems because it helps reduce the magnitude of thermal (superparamagnetic) fluctuations, it can modify the flow of current, and it can induce new phenomena, such as the quantum tunnelling of magnetization. We discuss here, on the basis of density functional calculations, the novel and unconventional feature of colossal magnetic anisotropy--the strict impossibility of magnetization to rotate from the parallel to the orthogonal direction--which, owing to a quantum mechanical selection rule, the recently predicted Pt nanowire magnetism should exhibit. Model calculations suggest that the colossal magnetic anisotropy of a Pt chain should persist after weak adsorption on an inert substrate or surface step.


Subject(s)
Crystallization/methods , Magnetics , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Platinum/chemistry , Anisotropy , Electroplating , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
17.
Proc Natl Acad Sci U S A ; 105(16): 5969-74, 2008 Apr 22.
Article in English | MEDLINE | ID: mdl-18408162

ABSTRACT

The physics of the ice crystal surface and its interaction with adsorbates are not only of fundamental interest but also of considerable importance to terrestrial and planetary chemistry. Yet the atomic-level structure of even the pristine ice surface at low temperature is still far from well understood. This computational study focuses on the pattern of dangling H and dangling O (lone pairs) atoms at the basal ice surface. Dangling atoms serve as binding sites for adsorbates capable of hydrogen- and electrostatic bonding. Extension of the well known orientational disorder ("proton disorder") of bulk crystal ice to the surface would naturally suggest a disordered dangling atom pattern; however, extensive computer simulations employing two different empirical potentials indicate significant free energy preference for a striped phase with alternating rows of dangling H and dangling O atoms, as suggested long ago by Fletcher [Fletcher NH (1992) Philos Mag 66:109-115]. The presence of striped phase domains within the basal surface is consistent with the hitherto unexplained minor fractional peaks in the helium diffraction pattern observed 10 years ago. Compared with the disordered model, the striped model yields improved agreement between computations and experimental ppp-polarized sum frequency generation spectra.

18.
Phys Rev Lett ; 100(3): 036103, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-18233006

ABSTRACT

In this Letter we report a simulation study in which we compare the solid-liquid interfacial free energy of NaCl at coexistence, gamma_{LS}, with the value that follows from the height of the homogeneous nucleation barrier. The two estimates differ by more than 100%. Smaller discrepancies are found for gamma_{LS} of hard-sphere and of Lennard-Jones particles. We consider a variety of possible causes for this discrepancy and conclude that it is due to a finite-size effect that cannot be corrected for by any simple thermodynamic procedure. By taking into account the finite-size effects of gamma_{LS} obtained in real nucleation experiments, we obtain quantitative agreement between gamma_{LS} estimated in the simulations and derived from the experiments. Our finding suggests that most published solid-liquid surface free energies derived from nucleation experiments will have to be revised.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(4 Pt 2): 046603, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17995123

ABSTRACT

A nonlinear model inspired by the tribological problem of a thin solid lubricant layer between two sliding periodic surfaces is used to analyze the novel phenomenon of hysteresis at pinning or depinning around a moving state rather than around a statically pinned state. The cycling of an external driving force F_{ext} is used as a simple means to destroy and then to recover the dynamically pinned state previously discovered for the lubricant center-of-mass velocity. Depinning to a freely sliding state occurs either directly, with a single jump, or through a sequence of discontinuous transitions. The intermediate sliding steps are reminiscent of phase-locked states and stick-slip motion in static friction, and can be interpreted in terms of the appearance of traveling density defects in an otherwise regular arrangement of kinks. Repinning occurs more smoothly, through the successive disappearance of different traveling defects. The resulting bistability and multistability regions may also be accessed by varying mechanical parameters other than F_{ext} . The hysteretic phenomena are confined to the underdamped dynamics, and the overdamped dynamics of the same model is generally not hysteretic, much like in static friction.

20.
Phys Rev Lett ; 98(8): 086401, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17359115

ABSTRACT

The ground state of Sn/Si(111) and Sn/Ge(111) surface alpha phases is reexamined theoretically, based on ab initio calculations where correlations are approximately included through the orbital dependence of the Coulomb interaction (in the local density+Hubbard U approximation). The effect of correlations is to destabilize the vertical buckling in Sn/Ge(111) and to make the surface magnetic, with a metal-insulator transition for both systems. This signals the onset of a stable narrow gap Mott-Hubbard insulating state, in agreement with very recent experiments. Antiferromagnetic exchange is proposed to be responsible for the observed Gamma-point photoemission intensity, as well as for the partial metallization observed above 60 K in Sn/Si(111). Extrinsic metallization of Sn/Si(111) by, e.g., alkali doping, could lead to a novel 2D triangular superconducting state of this and similar surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...