Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(3)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138254

ABSTRACT

Increasing the Mode I inter-laminar fracture toughness of composite laminates can contribute to slowing down delamination growth phenomena, which can be considered one of the most critical damage mechanisms in composite structures. Actually, the Mode I interlaminar fracture toughness (GIc) in fibre-reinforced composite materials has been found to considerably increase with the crack length when the fibre bridging phenomenon takes place. Hence, in this paper, the fibre bridging phenomenon has been considered as a natural toughening mechanism able to replace embedded metallic or composite reinforcements, currently used to increase tolerance to inter-laminar damage. An experimental/numerical study on the influence of delamination growth on the compressive behaviour of fibre-reinforced composites characterised by high sensitivity to the fibre bridging phenomenon has been performed. Coupons, made of material systems characterised by a variable toughness related to a high sensitivity to the fibre bridging phenomenon and containing artificial through-the-width delaminations, were subjected to a compressive mechanical test and compared to coupons made of standard material system with constant toughness. Out-of-plane displacements and strains were monitored during the compression test by means of strain gauges and digital image correlation to assess the influence of fibre bridging on delamination buckling, delamination growth and on the global buckling of the specimens, including buckling shape changes. Experimental data were combined with a numerical study, performed by means of a virtual crack closure technique based procedure, named SMart Time XB - Fibre Bridging (SMXB-FB), able to mimic the crack bridging effect on the toughness properties of the material system. The combination of numerical results and experimental data has allowed the deformations and the buckling shape changes to be correlated to the onset and evolution of damage and, hence, contributes to improving the knowledge on the interaction of the failure mechanisms in the investigated composite specimens.

2.
Materials (Basel) ; 7(3): 1483-1501, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-28788527

ABSTRACT

It is a fact that the presence of porosity in composites has detrimental effects on their mechanical properties. Then, due to the high probability of void formation during manufacturing processes, it is necessary to have the availability of non-destructive evaluation techniques, which may be able to discover the presence and the distribution of porosity in the final parts. In recent years, flash thermography has emerged as the most valuable method, but it is still not adequately enclosed in the industrial enterprise. The main reason of this is the lack of sufficient quantitative data for a full validation of such a technique. The intention of the present work is to supply an overview on the current state-of-the-art regarding the use of flash thermography to evaluate the porosity percentage in fiber reinforced composite materials and to present the latest results, which are gathered by the authors, on porous carbon fiber reinforced polymer laminates. To this end, several coupons of two different stacking sequences and including a different amount of porosity are fabricated and inspected with both non-destructive and destructive testing techniques. Data coming from non-destructive testing with either flash thermography or ultrasonics are plotted against the porosity percentage, which was previously estimated with the volumetric method. The new obtained results are a witness to the efficacy of flash thermography. Some key points that need further consideration are also highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL
...