Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(17)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484411

ABSTRACT

Dissolved organic matter (DOM) plays an important role in the environment by influencing the transport and distribution of organic and inorganic components through different processes: the retention, mobilization, and bio-availability of potentially toxic elements (PTEs). The aim of the present study is to examine the dimensional characterization of humic acids (HA) extracted from soil matrix, as well as to analyze the metal distribution among different ligand classes. The molecular size distribution of the HA extract from soil showed three dimensional classes: 52 KDa, 4.5 KDa, and 900 Da. HPSEC-ICP-MS measurements demonstrated that the dimensional classes, relative to first two fractions, bind the largest part of metals. The complexing capacity of HA was evaluated to assess the pollutants mobility in the environmental system. In particular, cadmium (Cd) and copper (Cu) complexation was investigated due to the great concern regarding their bio-availability and toxicity in natural waters. The complexing capacity of HA solution (20 mg/L) was measured by titration using a high-performance size exclusion chromatography (HP-SEC) coupled to an inductively coupled mass spectrometry (ICP-MS). Results obtained by this technique are compared with those obtained by anodic stripping voltammetry (ASV) to investigate the effects of kinetic lability of complexes on measurements carried by HPSEC-ICP-MS. In this study, results of ligand concentrations and stability constants obtained via the two techniques are assessed considering the detection window associated to the applied analytical methodology. Results obtained using the two analytical techniques showed that Cd is complexed by two classes of ligands. However, the ligand concentration values obtained using the two techniques are different, because the detection window associated to the two methodologies; the complexing capacity, which was obtained as sum of the two classes of ligands, were 33 nmol/L and 9 nmol/L for ASV and HPSEC-ICP-MS, respectively. The copper complexing capacities determined by the two methodologies are comparable: 166 and 139 nmol/L for ASV and HPSEC-ICP-MS, respectively. However, the results of Cu titration differ for the two techniques, highlighting only one class of ligands when ASV was used, and two classes when HPSEC-ICP-MS was employed. Differences on results obtained by the two techniques are explained considering the kinetic lability of complexes; the results show that, differently from previous studies, also Cu complexes can be kinetically labile, if one technique with high reaction time is used, as well some cadmium complexes are sufficient stable to be determined by HPSEC-ICP-MS.


Subject(s)
Cadmium/chemistry , Chromatography, Gel/methods , Copper/chemistry , Chromatography, High Pressure Liquid , Humic Substances , Mass Spectrometry
2.
Mar Pollut Bull ; 129(2): 884-892, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29106942

ABSTRACT

In order to study the role of sediment re-suspension and deposition versus the role of organic complexation, we investigated the speciation of cadmium (Cd), copper (Cu) and lead (Pb) in samples collected in the Venice Lagoon during several campaigns from 1992 to 2006. The increment in Cd and Pb concentration in the dissolved phases, observed in the central and northern basins, can be linked to important alterations inside the lagoon caused by industrial and urban factors. The study focuses on metal partition between dissolved and particulate phases. The analyses carried out in different sites illustrate the complex role of organic matter in the sedimentation process. While Cd concentration in sediments can be correlated with organic matter, no such correlation can be established in the case of Pb, whose particulate concentration is related only to the dissolved concentration. In the case of Cu, the role of organic complexation remains unclear.


Subject(s)
Dust/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Heavy/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Cadmium/analysis , Copper/analysis , Italy , Lead/analysis , Mediterranean Sea , Solubility
3.
Chemosphere ; 183: 132-138, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28544898

ABSTRACT

The concentrations of water-soluble compounds (ions, carboxylic acids, amino acids, sugars, phenolic compounds) in aerosol and snow have been determined at the coastal Italian base "Mario Zucchelli" (Antarctica) during the 2014-2015 austral summer. The main aim of this research was to investigate the air-snow transfer processes of a number of classes of chemical compounds and investigate their potential as tracers for specific sources. The composition and particle size distribution of Antarctic aerosol was measured, and water-soluble compounds accounted for 66% of the PM10 total mass concentration. The major ions Na+, Mg2+, Cl- and SO42- made up 99% of the total water soluble compound concentration indicating that sea spray input was the main source of aerosol. These ionic species were found mainly in the coarse fraction of the aerosol resulting in enhanced deposition, as reflected by the snow composition. Biogenic sources were identified using chemical markers such as carboxylic acids, amino acids, sugars and phenolic compounds. This study describes the first characterization of amino acids and sugar concentrations in surface snow. High concentrations of amino acids were found after a snowfall event, their presence is probably due to the degradation of biological material scavenged during the snow event. Alcohol sugars increased in concentration after the snow event, suggesting a deposition of primary biological particles, such as airborne fungal spores.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Organic Chemicals/analysis , Snow/chemistry , Water/chemistry , Aerosols , Antarctic Regions , Ions , Particle Size , Seasons , Solubility
4.
Environ Sci Pollut Res Int ; 24(3): 2724-2733, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27834051

ABSTRACT

The concentration and particle-size distribution of ionic species in Antarctic aerosol samples were determined to investigate their potential sources, chemical evolution, and transport. We analyzed aerosol samples collected at two different Antarctic sites: a coastal site near Victoria Land close to the Italian Research Base "Mario Zucchelli", and another site located on the Antarctic plateau, close to Italian-French Concordia Research Station. We investigated anionic compounds using ion-chromatography coupled to mass spectrometry, and cationic species through capillary ion chromatography with conductometry. Aerosol collected close to the coast was mainly characterized by sea salt species such as Na+, Mg2+, and SO42-. These species represented a percentage of 88% of the total sum of all detected ionic species in the aerosol samples from the coastal site. These species were mainly distributed in the coarse fraction, confirming the presence of primary aerosol near the ocean source. Aerosol collected over the Antarctic plateau was characterized by high acidity, with nss-SO42-, NO3-, and methanesulfonic acid as the most abundant species. These species were mainly distributed in the <0.49 µm fraction, and they had a behavior of a typical secondary aerosol, where several chemical and physical processes occurred.


Subject(s)
Aerosols , Air Pollutants , Anions , Antarctic Regions , Environmental Monitoring , Ions , Mass Spectrometry , Particle Size
5.
Environ Sci Pollut Res Int ; 23(7): 6951-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26681325

ABSTRACT

Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Metals/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Ships/statistics & numerical data , Cities , Italy , Particulate Matter/analysis
6.
J Environ Monit ; 11(1): 193-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19137157

ABSTRACT

The determination of trace elements in atmospheric particulate is affected by a number of problems that arise from some critical points such as the blank of the filters, sample heterogeneity and pre-analytical treatments. In the framework of a monitoring campaign conducted in the Venice Lagoon the analytical methodology for the determination of 20 trace elements (Al, As, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Sr, V, Zn) in atmospheric particulate samples by inductively coupled plasma quadrupole mass spectroscopy (ICP-QMS) has been optimized taking into account the individual critical points. Tests were carried out to estimate the blank contributions, and minimize the detection limit (LOD), measurements were also carried out to evaluate the accuracy and the repeatability. To obtain a complete dissolution of aerosol dust material and good recoveries of the elements, the acid mixture and the microwave assisted digestion program were optimized. The blank contributions from membrane filter manipulation and transportation prior to exposure were tested for the slotted and back filters by placing them on the sampling device for some minutes without air flowing to obtain field blanks (FBs). The contribution to the blank values of passive deposition and by contact with the samplers (quoted as campaign blanks, CBs) was measured by exposing the membranes throughout the sampling session (fifteen days) without any air flow. Instrumental ICP-QMS parameters were optimized and calibration curve intervals were selected on the basis of the necessity of simultaneous determination of the elements present at different levels of concentration. The limits of detection for each elements and the investigated method were suitable to determine the 20 elements reported above in the atmospheric aerosol fractionated in 6 classes ranging between 10 to 0.49 microm. It allows the determination of trace elements in aerosol in a large range of concentrations that can be observed in areas characterized by remarkable variability and regions with different levels of contamination.


Subject(s)
Aerosols/chemistry , Atmosphere/chemistry , Environmental Monitoring/methods , Environmental Pollutants/analysis , Particulate Matter/chemistry , Trace Elements/analysis , Italy , Reproducibility of Results
7.
Ann Chim ; 97(5-6): 343-58, 2007.
Article in English | MEDLINE | ID: mdl-17696013

ABSTRACT

The results of an experimental analysis carried out to investigate PM(2.5) concentration levels and the content of polycyclic aromatic hydrocarbons, as well as inorganic trace elements in the atmospheric particles are presented. Measurements were taken with a micrometeorological station equipped with an optical PM(2.5) detector, and simultaneously, particles were collected on filters for subsequent chemical analyses. The average value of daily PM(2.5) concentration is 21.5 ug/m3 and real-time measurements indicate that the average concentration during the day (8 am to 8 pm) is about 25% lower than the nocturnal average. Short-time averages of PM2.5 decrease when the wind speed increases as consequence of the more efficient mixing. Meteorological measurements indicate the presence of a local daily (breeze) circulation with wind blowing from the Alps or the Adriatic Sea and, during this circulation, larger concentrations were observed, with wind coming from the Alps. Days of high PM(2.5) concentration with dominant anthropic or with prevalent crustal contributions were identified. Regarding trace metals, their average concentrations are comparable to those found in others urban areas, except for Cd (3 ng m(-3)), probably due to the presence of glass-works in Murano. The highest concentrations are observed for K (99 ng m(-3)) and Na (73 ng m(-3)), which are the main constituents of marine spray, while the lowest concentrations are observed for elements such as Cs and Co (respectively 0.01 and 0.02 ng m(-3)). Also the concentrations of PAH are comparable with those of other industrial areas, as their sum ranges from 0.16 ng m(-3) to 3.73 ng m(-3), but if considered as B(a)P toxicity equivalent, they are largely lower (0.036 +/- 0.026 ng m(-3)). From the analyses of discriminating ratios, it has been found that the main origin of PAH in PM(2.5) samples may be petrogenic, probably related to the presence of refinery and petrochemical plants on the mainland, although the contribution of combustion processes cannot be excluded.


Subject(s)
Environmental Monitoring , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Seawater/chemistry , Trace Elements/analysis , Cadmium/analysis , Cities , Geography , Italy , Particle Size , Potassium/analysis , Sodium/analysis , Time Factors , Wind
8.
Ann Chim ; 92(3): 163-76, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12025503

ABSTRACT

The methodology for using DPASV to study cadmium complexation in seawater is evaluated using EDTA as a model ligand and by analysing natural samples. The results show that the methodology gives an accurate evaluation of metal complexation when inert complexes are studied, both as regards the ligand concentration and the conditional stability constant; the error for both the parameters is lower than 10% at a ligand concentration of about 10(-8) M and a conditional stability constant of 10(9) M-1. Cadmium complexes with ligands present in natural seawater show an evident kinetic lability that may lead to underestimation of the conditional stability constant when a working electrode characterised by a very thick diffusion layer is used. The conditional stability constant in one water sample of the Adriatic coast ranged between 0.14 and 1.4 l/nmol using a rotating disk electrode at rotation rates of 300 and 6000 rpm. The results of cadmium complexation obtained for samples collected in coastal seawater show that the ligands present low specificity for the metal.


Subject(s)
Cadmium/chemistry , Electrochemistry/methods , Seawater/chemistry , Edetic Acid/chemistry , Hydrogen-Ion Concentration , Ligands , Mercury/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...