Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chimia (Aarau) ; 78(1-2): 40-44, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38430062

ABSTRACT

The addition of individual quanta of rotational excitation to a molecule has been shown to markedly change its reactivity by significantly modifying the intermolecular interactions. So far, it has only been possible to observe these rotational effects in a very limited number of systems due to lack of rotational selectivity in chemical reaction experiments. The recent development of rotationally controlled molecular beams now makes such investigations possible for a wide range of systems. This is particularly crucial in order to understand the chemistry occurring in the interstellar medium, such as exploring the formation of carbon-based astrochemical molecules and the emergence of molecular complexity in interstellar space from the reaction of small atomic and molecular fragments.

2.
Phys Rev Lett ; 132(8): 083001, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457720

ABSTRACT

We report the generation, trapping, and sympathetic cooling of individual conformers of molecular ions with the example of cis- and trans- meta-aminostyrene. Following conformationally selective photoionization, the incorporation of the conformers into a Coulomb crystal of laser-cooled calcium ions was confirmed by fluorescence imaging, mass spectrometry, and molecular dynamics simulations. We deduce the molecules to be stable in the trap environment for more than ten minutes. The present results pave the way for the spectroscopy and controlled chemistry of distinct ionic conformers in traps.

3.
J Breath Res ; 17(3)2023 04 05.
Article in English | MEDLINE | ID: mdl-37016829

ABSTRACT

Rapid testing is essential to fighting pandemics such as coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exhaled human breath contains multiple volatile molecules providing powerful potential for non-invasive diagnosis of diverse medical conditions. We investigated breath detection of SARS-CoV-2 infection using cavity-enhanced direct frequency comb spectroscopy (CE-DFCS), a state-of-the-art laser spectroscopic technique capable of a real-time massive collection of broadband molecular absorption features at ro-vibrational quantum state resolution and at parts-per-trillion volume detection sensitivity. Using a total of 170 individual breath samples (83 positive and 87 negative with SARS-CoV-2 based on reverse transcription polymerase chain reaction tests), we report excellent discrimination capability for SARS-CoV-2 infection with an area under the receiver-operating-characteristics curve of 0.849(4). Our results support the development of CE-DFCS as an alternative, rapid, non-invasive test for COVID-19 and highlight its remarkable potential for optical diagnoses of diverse biological conditions and disease states.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Breath Tests , Spectrum Analysis , Lasers , Sensitivity and Specificity
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34599098

ABSTRACT

Breath analysis enables rapid, noninvasive diagnostics, as well as long-term monitoring of human health, through the identification and quantification of exhaled biomarkers. Here, we demonstrate the remarkable capabilities of mid-infrared (mid-IR) cavity-enhanced direct-frequency comb spectroscopy (CE-DFCS) applied to breath analysis. We simultaneously detect and monitor as a function of time four breath biomarkers-[Formula: see text]OH, [Formula: see text], [Formula: see text]O, and HDO-as well as illustrate the feasibility of detecting at least six more ([Formula: see text]CO, [Formula: see text], OCS, [Formula: see text], [Formula: see text], and [Formula: see text]) without modifications to the experimental apparatus. We achieve ultrahigh detection sensitivity at the parts-per-trillion level. This is made possible by the combination of the broadband spectral coverage of a frequency comb, the high spectral resolution afforded by the individual comb teeth, and the sensitivity enhancement resulting from a high-finesse cavity. Exploiting recent advances in frequency comb, optical coating, and photodetector technologies, we can access a large variety of biomarkers with strong carbon-hydrogen-bond spectral signatures in the mid-IR.


Subject(s)
Breath Tests/methods , Spectrum Analysis/methods , Biomarkers/metabolism , Humans , Sensitivity and Specificity
5.
J Chem Phys ; 153(10): 104202, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32933278

ABSTRACT

Radicals are prevalent in gas-phase environments such as the atmosphere, combustion systems, and the interstellar medium. To understand the properties of the processes occurring in these environments, it is helpful to study radical reaction systems in isolation-thereby avoiding competing reactions from impurities. There are very few methods for generating a pure beam of gas-phase radicals, and those that do exist involve complex setups. Here, we provide a straightforward and versatile solution. A magnetic radical filter (MRF), composed of four Halbach arrays and two skimming blades, can generate a beam of velocity-selected low-field-seeking hydrogen atoms. As there is no line-of-sight through the device, all species that are unaffected by the magnetic fields are physically blocked; only the target radicals are successfully guided around the skimming blades. The positions of the arrays and blades can be adjusted, enabling the velocity distribution of the beam (and even the target radical species) to be modified. The MRF is employed as a stand-alone device-filtering radicals directly from the source. Our findings open up the prospect of studying a range of radical reaction systems with a high degree of control over the properties of the radical reactants.

6.
Phys Chem Chem Phys ; 22(17): 9180-9194, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32342970

ABSTRACT

The prospect of studying state-to-state chemical reaction dynamics, with full control over all of the reaction parameters, is becoming a reality for a small number of systems. Thanks to the rapid development of new experimental techniques (alongside novel combinations of existing methods), an increasingly diverse range of reactants can be prepared under cold conditions and manipulated with external fields. These tools are enabling the study of reactions at previously inaccessible collision energies; the role of long-range forces and quantum effects are beginning to be experimentally probed-challenging the accuracy of theoretical predictions and fundamental models of reactivity. In this perspective article, we outline the key methodologies that are adopted for the study of cold and controlled reaction dynamics. We discuss the motivation for these studies, detail the progress made to date, and highlight the future prospects for the field.

7.
Rev Sci Instrum ; 90(3): 033201, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30927814

ABSTRACT

A Halbach array composed of 12 permanent magnets in a hexapole configuration is employed to deflect hydrogen atoms as they exit a Zeeman decelerator. The ability to preferentially manipulate H atoms is very useful, as there are currently very few techniques that are appropriate for purifying a beam of H atoms from precursor molecules (such as molecular hydrogen or ammonia), seed gases, and other contaminant species. The extent to which hydrogen atoms are deflected by a single Halbach array when it is tilted or shifted off the main beam axis is characterised experimentally and interpreted with the aid of a simple mathematical model. A radical beam filter is subsequently introduced, where four Halbach arrays arranged in series serve to deflect H atoms away from the main beam axis and around skimming blades; all other components of the incoming beam are blocked by the blades and are thus not transmitted through the magnetic guide. The properties of the guide, as established by experimental measurements and complemented by detailed simulations, confirm that it is a highly effective beam filter-successfully generating a pure and velocity-selected beam of H atoms.

8.
J Phys Chem A ; 123(25): 5388-5394, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31002514

ABSTRACT

In Zeeman deceleration, only a small subset of low-field-seeking particles in the incoming beam possess initial velocities and positions that place them within the phase-space acceptance of the device. In order to maximize the number of particles that are successfully decelerated to a selected final velocity, we seek to optimize the phase-space acceptance of the decelerator. Three-dimensional particle trajectory simulations are employed to investigate the potential benefits of using a covariance matrix adaptation evolutionary strategy (CMA-ES) optimization method for decelerators longer than 12 stages and for decelerating species other than H atoms. In all scenarios considered, the evolutionary algorithm-optimized sequences yield vastly more particles within the target velocity range. This is particularly evident in scenarios where standard sequences are known to perform poorly; simulations show that CMA-ES optimization of a standard sequence decelerating H atoms from an initial velocity of 500 ms-1 down to a final velocity of 200 ms-1 in a 24-stage decelerator produces a considerable 5921% (or 60-fold) increase in the number of successfully decelerated particles. Particle losses that occur with standard pulse sequences-for example, arising from the coupling of longitudinal and transverse motion-are overcome in the CMA-ES optimization process as the passage of all particles through the decelerator is explicitly considered and focusing effects are accounted for in the optimization process.

9.
J Chem Phys ; 149(17): 174201, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30408981

ABSTRACT

Generating a controllable and pure source of molecular free-radicals or open-shell atoms has been one of the primary barriers hindering the detailed study of radical processes in the laboratory. Here, we introduce a novel magnetic guide for the generation of a pure beam of velocity-selected radicals-a tuneable source that will enable the study of radical interactions with exceptional control over the properties of the radical species. Only radicals with a selected velocity are transmitted through the guide; all other components of the incoming beam (radical species traveling at other velocities, precursor molecules, and seed gas) are removed. The guide is composed of four Halbach arrays-hexapolar focusing elements-and two skimming blades. The relative positions of these components can be adjusted to tune the properties of the resulting beam and to optimise transmission for a given velocity. Experimental measurements of Zeeman-decelerated H atoms transmitted through the guide, combined with extensive simulations, show that the magnetic guide removes 99% of H-atoms traveling outside the narrow target velocity range.

10.
Langmuir ; 34(6): 2312-2323, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29323919

ABSTRACT

We demonstrate the ability to tune the formation of extended structures in films of poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide at the air/water interface through control over the charge/structure of aggregates as well as the ionic strength of the subphase. Our methodology to prepare loaded polyelectrolyte/surfactant films from self-assembled liquid crystalline aggregates exploits their fast dissociation and Marangoni spreading of material upon contact with an aqueous subphase. This process is proposed as a potential new route to prepare cheap biocompatible films for transfer applications. We show that films spread on water from swollen aggregates of low/negative charge have 1:1 charge binding and can be compressed only to a monolayer, beyond which material is lost to the bulk. For films spread on water from compact aggregates of positive charge, however, extended structures of the two components are created upon spreading or upon compression of the film beyond a monolayer. The application of ellipsometry, Brewster angle microscopy, and neutron reflectometry as well as measurements of surface pressure isotherms allow us to reason that formation of extended structures is activated by aggregates embedded in the film. The situation upon spreading on 0.1 M NaCl is different as there is a high concentration of small ions that stabilize loops of the polyelectrolyte upon film compression, yet extended structures of both components are only transient. Analogy of the controlled formation of extended structures in fluid monolayers is made to reservoir dynamics in lung surfactant. The work opens up the possibility to control such film dynamics in related systems through the rational design of particles in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...