Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 279: 120318, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37572765

ABSTRACT

Large-scale networks of phase synchronization are considered to regulate the communication between brain regions fundamental to cognitive function, but the mapping to their structural substrates, i.e., the structure-function relationship, remains poorly understood. Biophysical Network Models (BNMs) have demonstrated the influences of local oscillatory activity and inter-regional anatomical connections in generating alpha-band (8-12 Hz) networks of phase synchronization observed with Electroencephalography (EEG) and Magnetoencephalography (MEG). Yet, the influence of inter-regional conduction delays remains unknown. In this study, we compared a BNM with standard "distance-dependent delays", which assumes constant conduction velocity, to BNMs with delays specified by two alternative methods accounting for spatially varying conduction velocities, "isochronous delays" and "mixed delays". We followed the Approximate Bayesian Computation (ABC) workflow, i) specifying neurophysiologically informed prior distributions of BNM parameters, ii) verifying the suitability of the prior distributions with Prior Predictive Checks, iii) fitting each of the three BNMs to alpha-band MEG resting-state data (N = 75) with Bayesian optimization for Likelihood-Free Inference (BOLFI), and iv) choosing between the fitted BNMs with ABC model comparison on a separate MEG dataset (N = 30). Prior Predictive Checks revealed the range of dynamics generated by each of the BNMs to encompass those seen in the MEG data, suggesting the suitability of the prior distributions. Fitting the models to MEG data yielded reliable posterior distributions of the parameters of each of the BNMs. Finally, model comparison revealed the BNM with "distance-dependent delays", as the most probable to describe the generation of alpha-band networks of phase synchronization seen in MEG. These findings suggest that distance-dependent delays might contribute to the neocortical architecture of human alpha-band networks of phase synchronization. Hence, our study illuminates the role of inter-regional delays in generating the large-scale networks of phase synchronization that might subserve the communication between regions vital to cognition.


Subject(s)
Brain , Magnetoencephalography , Humans , Bayes Theorem , Brain/physiology , Magnetoencephalography/methods , Electroencephalography/methods , Brain Mapping/methods
2.
Nat Commun ; 11(1): 5363, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097714

ABSTRACT

Inter-areal synchronization of neuronal oscillations at frequencies below ~100 Hz is a pervasive feature of neuronal activity and is thought to regulate communication in neuronal circuits. In contrast, faster activities and oscillations have been considered to be largely local-circuit-level phenomena without large-scale synchronization between brain regions. We show, using human intracerebral recordings, that 100-400 Hz high-frequency oscillations (HFOs) may be synchronized between widely distributed brain regions. HFO synchronization expresses individual frequency peaks and exhibits reliable connectivity patterns that show stable community structuring. HFO synchronization is also characterized by a laminar profile opposite to that of lower frequencies. Importantly, HFO synchronization is both transiently enhanced and suppressed in separate frequency bands during a response-inhibition task. These findings show that HFO synchronization constitutes a functionally significant form of neuronal spike-timing relationships in brain activity and thus a mesoscopic indication of neuronal communication per se.


Subject(s)
Brain/pathology , Cerebral Cortex/physiology , Cortical Synchronization/physiology , Adult , Brain Mapping , Electric Stimulation , Electroencephalography , Humans , Male , Neurons/physiology , Young Adult
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6557-6560, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947344

ABSTRACT

Brain Tissue Segmentation (BTS) in young children and neonates is not a trivial task due to peculiar characteristics of the developing brain. The aim of this study is to present the preliminary results of new atlas-free BTS (afBTS) algorithm of MR images for pediatric applications, based on clustering. The algorithm works on axial T1, T2 and FLAIR sequences. First, the Cerebrospinal Fluid (CSF) is identified using the Region Growing algorithm. The remaining voxels are processed with the k-means algorithm in order to separate White Matter (WM) and Grey Matter (GM). The afBTS algorithm was applied to a population of 13 neonates; the segmentations were evaluated by two expert pediatric neuroradiologists and compared with an atlas-based algorithm. The results were promising: afBTS allowed reconstruction of WM and CSF with an image quality comparable to the reference of standard while lower segmentation quality was obtained for the GM segmentation.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Brain , Child , Child, Preschool , Cluster Analysis , Humans , Infant, Newborn
4.
AJNR Am J Neuroradiol ; 38(3): 639-647, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28104634

ABSTRACT

BACKGROUND AND PURPOSE: Segmental callosal agenesis is characterized by the absence of the intermediate callosal portion. We aimed to evaluate the structural connectivity of segmental callosal agenesis by using constrained spherical deconvolution tractography and connectome analysis. MATERIALS AND METHODS: We reviewed the clinical-radiologic features of 8 patients (5 males; mean age, 3.9 years). Spherical deconvolution and probabilistic tractography were performed on diffusion data. Structural connectivity analysis, including summary network metrics, modularity analysis, and network consistency measures, was applied in 5 patients and 10 age-/sex-matched controls. RESULTS: We identified 3 subtypes based on the position of the hippocampal commissure: beneath the anterior callosal remnant in 3 patients (type I), beneath the posterior callosal remnant in 3 patients (type II), and between the anterior and posterior callosal remnants in 2 patients (type III). In all patients, the agenetic segment corresponded to fibers projecting to the parietal lobe, and segmental Probst bundles were found at that level. Ectopic callosal bundles were identified in 3 patients. Topology analysis revealed reduced global connectivity in patients compared with controls. The network topology of segmental callosal agenesis was more variable across patients than that of the control connectomes. Modularity analysis revealed disruption of the structural core organization in the patients. CONCLUSIONS: Three malformative subtypes of segmental callosal agenesis were identified. Even the absence of a small callosal segment may impact global brain connectivity and modularity organization. The presence of ectopic callosal bundles may explain the greater interindividual variation in the connectomes of patients with segmental callosal agenesis.


Subject(s)
Agenesis of Corpus Callosum/pathology , Adolescent , Agenesis of Corpus Callosum/diagnostic imaging , Case-Control Studies , Child , Child, Preschool , Connectome , Diffusion Tensor Imaging , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Male , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Parietal Lobe/diagnostic imaging , Parietal Lobe/pathology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...