Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 8: 170, 2014.
Article in English | MEDLINE | ID: mdl-25009456

ABSTRACT

The perceptual organization of auditory scenes is a hard but important problem to solve for human listeners. It is thus likely that cues from several modalities are pooled for auditory scene analysis, including sensory-motor cues related to the active exploration of the scene. We previously reported a strong effect of head motion on auditory streaming. Streaming refers to an experimental paradigm where listeners hear sequences of pure tones, and rate their perception of one or more subjective sources called streams. To disentangle the effects of head motion (changes in acoustic cues at the ear, subjective location cues, and motor cues), we used a robotic telepresence system, Telehead. We found that head motion induced perceptual reorganization even when the acoustic scene had not changed. Here we reanalyzed the same data to probe the time course of sensory-motor integration. We show that motor cues had a different time course compared to acoustic or subjective location cues: motor cues impacted perceptual organization earlier and for a shorter time than other cues, with successive positive and negative contributions to streaming. An additional experiment controlled for the effects of volitional anticipatory components, and found that arm or leg movements did not have any impact on scene analysis. These data provide a first investigation of the time course of the complex integration of sensory-motor cues in an auditory scene analysis task, and they suggest a loose temporal coupling between the different mechanisms involved.

3.
Proc Natl Acad Sci U S A ; 109(17): 6775-80, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22493250

ABSTRACT

Auditory scene analysis requires the listener to parse the incoming flow of acoustic information into perceptual "streams," such as sentences from a single talker in the midst of background noise. Behavioral and neural data show that the formation of streams is not instantaneous; rather, streaming builds up over time and can be reset by sudden changes in the acoustics of the scene. Here, we investigated the effect of changes induced by voluntary head motion on streaming. We used a telepresence robot in a virtual reality setup to disentangle all potential consequences of head motion: changes in acoustic cues at the ears, changes in apparent source location, and changes in motor or attentional processes. The results showed that self-motion influenced streaming in at least two ways. Right after the onset of movement, self-motion always induced some resetting of perceptual organization to one stream, even when the acoustic scene itself had not changed. Then, after the motion, the prevalent organization was rapidly biased by the binaural cues discovered through motion. Auditory scene analysis thus appears to be a dynamic process that is affected by the active sensing of the environment.


Subject(s)
Auditory Pathways , Motion , Head Movements , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...