Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 551, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228602

ABSTRACT

Recently, interest in programmable photonics integrated circuits has grown as a potential hardware framework for deep neural networks, quantum computing, and field programmable arrays (FPGAs). However, these circuits are constrained by the limited tuning speed and large power consumption of the phase shifters used. In this paper, we introduce the memresonator, a metal-oxide memristor heterogeneously integrated with a microring resonator, as a non-volatile silicon photonic phase shifter. These devices are capable of retention times of 12 hours, switching voltages lower than 5 V, and an endurance of 1000 switching cycles. Also, these memresonators have been switched using 300 ps long voltage pulses with a record low switching energy of 0.15 pJ. Furthermore, these memresonators are fabricated on a heterogeneous III-V-on-Si platform capable of integrating a rich family of active and passive optoelectronic devices directly on-chip to enable in-memory photonic computing and further advance the scalability of integrated photonic processors.

2.
Opt Lett ; 46(16): 3821-3824, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34388750

ABSTRACT

We report a heterogeneous GaAs-based quantum dot (QD) avalanche photodiode (APD) on silicon with an ultralow dark current of 10 pA at -1V, 3 dB bandwidth of 20 GHz and record gain-bandwidth product (GBP) of 585 GHz. Furthermore, open eye diagrams up to 32 Gb/s are demonstrated at 1310 nm. The k-factor has been measured for these devices to be as low as 0.14. A polarization dependence on gain and bandwidth has been observed and investigated. This shows the potential to integrate a high-speed receiver in a wavelength division multiplexing (WDM) system on a QD-based silicon photonics platform.

SELECTION OF CITATIONS
SEARCH DETAIL
...