Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Cell Med ; 9(1): 50-61, 2020.
Article in English | MEDLINE | ID: mdl-32832484

ABSTRACT

The renin-angiotensin system (RAS) exerts profound physiological effects on blood pressure regulation and fluid homeostasis, mainly by modulating renal, cardiovascular, and central nervous systems. Angiotensin (Ang)-(1-7), an end-product of RAS, is recognized by its cardiovascular protective properties through stimulation of the Mas receptor, including vasodilation, anti-inflammatory, and antihypertensive actions, and consequently, counter-regulating the well-known Ang II-elicited actions. The overall hypothesis of this study is that Ang-(1-7) inhibits Ang II-induced ERK1/2 activation in vascular smooth muscle cells (VSMCs), via regulation of mitogen-activated protein phosphatase-1 (MKP-1) activity. Aortas from male Wistar rats were incubated with Ang-(1-7) or vehicle. Concentration-response curves to Ang II were performed in endothelium-denuded aortas, in the presence or absence of ERK1/2 (PD98059) inhibitor or Mas receptor (A-779) antagonist. Expression of proteins was assessed by western blot, and immunohistochemistry was conducted in VSMCs. Ang-(1-7) incubation decreased Ang II-induced contractile response in aortas, and this effect was not observed in the presence of PD98059 or A-779. Stimulation of VSMCs with Ang-(1-7) prevented Ang II-induced ERK1/2 phosphorylation, but not C-Raf-activation. Furthermore, Ang II decreased MKP-1 phosphorylation in VSMCs. Interestingly, simultaneous incubation of Ang-(1-7) with Ang II favored MKP-1 phosphorylation, negatively modulating ERK1/2 activation in VSMCs. The results suggest that Ang-(1-7) counter-regulates actions evoked by Ang II overproduction, as observed in cardiovascular diseases, mainly by modulating MKP-1 activity. This evidence suggests that the role of Ang-(1-7) in MKP-1-regulation represents a target for new therapeutic development.

2.
Cells ; 8(12)2019 12 08.
Article in English | MEDLINE | ID: mdl-31817997

ABSTRACT

Aldosterone excess aggravates endothelial dysfunction in diabetes and hypertension by promoting the increased generation of reactive oxygen species, inflammation, and insulin resistance. Aldosterone activates the molecular platform inflammasome in immune system cells and contributes to vascular dysfunction induced by the mineralocorticoid hormone. It is unclear as to whether the NLRP3 inflammasome associated with the mineralocorticoid receptor contributes to vascular dysfunction in diabetic conditions. Here, we tested the hypothesis that an excess of aldosterone induces vascular dysfunction in type 2 diabetes, via the activation of mineralocorticoid receptors (MR) and assembly of the NLRP3 inflammasome. Mesenteric resistance arteries from control (db/m) and diabetic (db/db) mice treated with vehicle, spironolactone (MR antagonist) or an NLRP3 selective inhibitor (MCC950) were used to determine whether NLRP3 contributes to diabetes-associated vascular dysfunction. Db/db mice exhibited increased vascular expression/activation of caspase-1 and IL-1ß, increased plasma IL-1ß levels, active caspase-1 in peritoneal macrophages, and reduced acetylcholine (ACh) vasodilation, compared to db/m mice. Treatment of db/db mice with spironolactone and MCC950 decreased plasma IL-1ß and partly restored ACh vasodilation. Spironolactone also reduced active caspase-1-positive macrophages in db/db mice, events that contribute to diabetes-associated vascular changes. These data clearly indicate that MR and NLRP3 activation contribute to diabetes-associated vascular dysfunction and pro-inflammatory phenotype.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Mineralocorticoid/metabolism , Animals , Blotting, Western , Caspase 1/metabolism , Flow Cytometry , Furans , Heterocyclic Compounds, 4 or More Rings/pharmacology , Indenes , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Spironolactone/pharmacology , Sulfonamides , Sulfones/pharmacology
3.
PLoS One ; 13(12): e0209190, 2018.
Article in English | MEDLINE | ID: mdl-30571725

ABSTRACT

Even though the coronary reperfusion process is the most important tool to preserve cardiac function, after myocardial infarction, reperfusion of acutely ischemic myocardium can induce injury. We aimed to evaluate the functional and molecular aspects 4 weeks after myocardial ischemia-reperfusion (IR) in rats. Male Wistar rats (N = 47) were subjected to myocardial IR by short-term (30 min) ligation and subsequent reperfusion of the left descending coronary artery. Control rats (N = 7) underwent the same surgical maneuver without coronary ligation. After 4 weeks, rats had their cardiac function examined by ventricular pressure recording under basal condition or pharmacological stress. Myocardial fibrosis and molecular mediators of IR injury (reactive oxygen species, tumor necrosis factor-alpha and matrix-metalloproteinase-2) were assessed as well. Most of the rats subjected to IR did not show macroscopic signs of infarct, while only 17% of these animals showed large myocardial infarction scars. Of note, all animals submitted to IR presented the functional and molecular parameters altered when compared with the control subjects. Cardiac function was attenuated in all animals submitted to IR, regardless the presence or size of macroscopic cardiac scars. Interstitial fibrosis, matrix-metalloproteinase-2 activity and the expression of tumor necrosis factor-alpha were higher in the myocardium of all IR rats as compared to the control subjects (p<0.05). Myocardium superoxide anion and hydrogen peroxide were increased in rats without or with mild cardiac scars. These results show that IR leads to myocardial injury in rats. Besides, even the animals with an apparent healthy myocardium (without infarct scar) presented cardiac dysfunction and molecular changes that may contribute to the development of heart failure over time.


Subject(s)
Cicatrix/pathology , Cicatrix/physiopathology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Animals , Cicatrix/metabolism , Collagen/metabolism , Disease Models, Animal , Heart/physiopathology , Male , Matrix Metalloproteinase 2/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Myocardium/pathology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ventricular Pressure
4.
Vascul Pharmacol ; 110: 42-48, 2018 11.
Article in English | MEDLINE | ID: mdl-30075228

ABSTRACT

Estrone (E1) produces remarkable vascular effects, including relaxation, modulation of proliferation, apoptosis and cell adhesion. This study investigated the role of estrogen receptors and endothelial signaling pathways in the vascular relaxation promoted by E1. Aortic rings from male Wistar rats (250-300 g) were contracted with phenylephrine and stimulated with graded concentrations of E1. The concentration-dependent relaxation induced by E1 was abolished after removal of the endothelium or incubation with the estrogen receptor antagonist ICI 182,780. G protein-coupled estrogen receptor antagonism did not alter the E1 effect. Pretreatment of endothelium-intact arteries with inhibitors of nitric oxide synthase, guanylyl cyclase, calmodulin (CaM) and PI3K reduced the E1-induced vasorelaxation. Incubation with inhibitors of the MEK/ERK1/2 or p38MAPK pathways did not alter the E1 vasorelaxation. Similarly, inhibition of cyclooxygenase or blockade of potassium channels did not change the E1 effect. Western blot analysis evidenced that E1 induces phosphorylation of eNOS, PI3K and Akt in rat aorta. Our data demonstrate that E1 induces aortic vascular relaxation through classic estrogen receptors activation on the endothelium. We also identify CaM and PI3K/Akt pathways as critical mediators of the NO-cGMP signaling activation by E1. These findings contribute to the notion that this estrogen regulates arterial function and represents another link, besides 17ß-estradiol (E2), between postmenopause and vascular dysfunction.


Subject(s)
Aorta/drug effects , Cyclic GMP/metabolism , Estrone/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Estrogen/drug effects , Second Messenger Systems/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Aorta/enzymology , Calmodulin/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , In Vitro Techniques , Male , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Rats, Wistar , Receptors, Estrogen/metabolism
5.
Can J Physiol Pharmacol ; 96(3): 232-240, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28793197

ABSTRACT

Overproduction of superoxide anion (•O2-) and O-linked ß-N-acetylglucosamine (O-GlcNAc) modification in the vascular system are contributors to endothelial dysfunction. This study tested the hypothesis that increased levels of O-GlcNAc-modified proteins contribute to •O2- production via activation of NADPH oxidase, resulting in impaired vasodilation. Rat aortic segments and vascular smooth muscle cells (VSMCs) were incubated with vehicle (methanol) or O-(2-acetamido-2-deoxy-d-glucopyranosylidenamino) N-phenylcarbamate (PUGNAc) (100 µM). PUGNAc produced a time-dependent increase in O-GlcNAc levels in VSMC and decreased endothelium-dependent relaxation, which was prevented by apocynin and tiron, suggesting that •O2- contributes to endothelial dysfunction under augmented O-GlcNAc levels. Aortic segments incubated with PUGNAc also exhibited increased levels of reactive oxygen species, assessed by dihydroethidium fluorescence, and augmented •O2- production, determined by lucigenin-enhanced chemiluminescence. Additionally, PUGNAc treatment increased Nox-1 and Nox-4 protein expression in aortas and VSMCs. Translocation of the p47phox subunit from the cytosol to the membrane was greater in aortas incubated with PUGNAc. VSMCs displayed increased p22phox protein expression after PUGNAc incubation, suggesting that NADPH oxidase is activated in conditions where O-GlcNAc protein levels are increased. In conclusion, O-GlcNAc levels reduce endothelium-dependent relaxation by overproduction of •O2- via activation of NADPH oxidase. This may represent an additional mechanism by which augmented O-GlcNAc levels impair vascular function.


Subject(s)
Acetylglucosamine/metabolism , Aorta, Thoracic/physiology , Superoxides/metabolism , Animals , Aorta, Thoracic/metabolism , Endothelium, Vascular/metabolism , Enzyme Activation , Glycosylation , Male , NADPH Oxidases/metabolism , Rats , Rats, Wistar , Vasodilation
6.
Arq Bras Cardiol ; 107(5): 427-436, 2016 Nov.
Article in English, Portuguese | MEDLINE | ID: mdl-27812679

ABSTRACT

BACKGROUND:: The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. OBJECTIVE:: To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. METHODS:: Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. RESULTS:: Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. CONCLUSION:: Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. FUNDAMENTO:: O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. OBJETIVOS:: Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase em artérias de resistência e o papel das espécies reativas de oxigênio (ERO) derivadas da NAD(P)H oxidase nessa resposta. Nós também avaliamos se ocorreu translocação da p47phox e ativação da NAD(P)H oxidase após o consumo agudo de etanol. MÉTODOS:: Ratos Wistar machos foram tratados com etanol via oral (1g/kg, p.o. gavagem) ou água (controle). Alguns ratos foram tratados com vitamina C (250 mg/kg, p.o. gavagem, 5 dias) antes de água ou etanol. O leito arterial mesentérico (LAM) foi coleado 30 min após a administração de etanol. RESULTADOS:: A vitamina C preveniu o aumento da geração de ânion superóxido (O2 -) e lipoperoxidação no LAM induzidos pelo etanol. A atividade da catalase (CAT), da superóxido dismutase (SOD) e os níveis de glutationa reduzida(GSH), nitrato e peróxido de hidrogênio (H2O2) não foram afetados após a ingestão aguda de etanol. A vitamina C e o 4-metilpirazol preveniram o aumento na geração de O2 - induzido pelo etanol em cultura de células do músculo liso vascular (CMLV). O etanol não afetou a fosforilação da proteína quinase B (Akt) e nem da óxido nítrico sintase endotelial (eNOS) (nos resíduos de Ser1177 ou Thr495) ou a reatividade vascular do LAM. A vitamina C preveniu o aumento da razão membrana:citosol da p47phox e a expressão da RhoA no LAM de rato induzido pelo etanol. CONCLUSÃO:: A ingestão aguda de etanol induz a ativação da via RhoA/Rho quinase por um mecanismo que envolve a geração de ERO. Nas artérias de resistência, o etanol ativa NAD(P)H oxidase induzindo a translocação da p47phox por um mecanismo redox-sensível.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Ethanol/administration & dosage , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , rhoA GTP-Binding Protein/metabolism , Animals , Ascorbic Acid/metabolism , Disease Models, Animal , Enzyme Activation , Male , NADPH Oxidases/drug effects , Protein Transport , Rats , Rats, Wistar
7.
Arq. bras. cardiol ; 107(5): 427-436, Nov. 2016. graf
Article in English | LILACS | ID: biblio-827863

ABSTRACT

Abstract Background: The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. Objective: To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Methods: Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Results: Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Conclusion: Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism.


Resumo Fundamento: O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Objetivos: Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase em artérias de resistência e o papel das espécies reativas de oxigênio (ERO) derivadas da NAD(P)H oxidase nessa resposta. Nós também avaliamos se ocorreu translocação da p47phox e ativação da NAD(P)H oxidase após o consumo agudo de etanol. Métodos: Ratos Wistar machos foram tratados com etanol via oral (1g/kg, p.o. gavagem) ou água (controle). Alguns ratos foram tratados com vitamina C (250 mg/kg, p.o. gavagem, 5 dias) antes de água ou etanol. O leito arterial mesentérico (LAM) foi coleado 30 min após a administração de etanol. Resultados: A vitamina C preveniu o aumento da geração de ânion superóxido (O2 -) e lipoperoxidação no LAM induzidos pelo etanol. A atividade da catalase (CAT), da superóxido dismutase (SOD) e os níveis de glutationa reduzida(GSH), nitrato e peróxido de hidrogênio (H2O2) não foram afetados após a ingestão aguda de etanol. A vitamina C e o 4-metilpirazol preveniram o aumento na geração de O2 - induzido pelo etanol em cultura de células do músculo liso vascular (CMLV). O etanol não afetou a fosforilação da proteína quinase B (Akt) e nem da óxido nítrico sintase endotelial (eNOS) (nos resíduos de Ser1177 ou Thr495) ou a reatividade vascular do LAM. A vitamina C preveniu o aumento da razão membrana:citosol da p47phox e a expressão da RhoA no LAM de rato induzido pelo etanol. Conclusão: A ingestão aguda de etanol induz a ativação da via RhoA/Rho quinase por um mecanismo que envolve a geração de ERO. Nas artérias de resistência, o etanol ativa NAD(P)H oxidase induzindo a translocação da p47phox por um mecanismo redox-sensível.


Subject(s)
Animals , Male , Rats , Ascorbic Acid/pharmacology , Oxidative Stress/drug effects , NADPH Oxidases/metabolism , rhoA GTP-Binding Protein/metabolism , Ethanol/administration & dosage , Antioxidants/pharmacology , Ascorbic Acid/metabolism , Rats, Wistar , NADPH Oxidases/drug effects , Protein Transport , Disease Models, Animal , Enzyme Activation
8.
PLoS One ; 9(6): e98895, 2014.
Article in English | MEDLINE | ID: mdl-24921930

ABSTRACT

BACKGROUND/AIMS: The aim of this study was to evaluate whether supplementation of high doses of cholecalciferol for two months in normotensive rats results in increased systolic arterial pressure and which are the mechanisms involved. Specifically, this study assesses the potential effect on cardiac output as well as the changes in aortic structure and functional properties. METHODS: Male Wistar rats were divided into three groups: 1) Control group (C, n = 20), with no supplementation of vitamin D, 2) VD3 (n = 19), supplemented with 3,000 IU vitamin D/kg of chow; 3) VD10 (n = 21), supplemented with 10,000 IU vitamin D/kg of chow. After two months, echocardiographic analyses, measurements of systolic arterial pressure (SAP), vascular reactivity, reactive oxygen species (ROS) generation, mechanical properties, histological analysis and metalloproteinase-2 and -9 activity were performed. RESULTS: SAP was higher in VD3 and VD10 than in C rats (p = 0.001). Echocardiographic variables were not different among groups. Responses to phenylephrine in endothelium-denuded aortas was higher in VD3 compared to the C group (p = 0.041). Vascular relaxation induced by acetylcholine (p = 0.023) and sodium nitroprusside (p = 0.005) was impaired in both supplemented groups compared to the C group and apocynin treatment reversed impaired vasodilation. Collagen volume fraction (<0.001) and MMP-2 activity (p = 0.025) was higher in VD10 group compared to the VD3 group. Elastin volume fraction was lower in VD10 than in C and yield point was lower in VD3 than in C. CONCLUSION: Our findings support the view that vitamin D supplementation increases arterial pressure in normotensive rats and this is associated with structural and functional vascular changes, modulated by NADPH oxidase, nitric oxide, and extracellular matrix components.


Subject(s)
Blood Pressure/drug effects , Cholecalciferol/pharmacology , Vasodilation/drug effects , Vitamins/pharmacology , Acetylcholine/pharmacology , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/physiology , Cholecalciferol/administration & dosage , Collagen/genetics , Collagen/metabolism , Dietary Supplements , Elastin/genetics , Elastin/metabolism , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Nitroprusside/pharmacology , Phenylephrine/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Vasodilator Agents/pharmacology , Vitamins/administration & dosage
9.
J Cardiovasc Pharmacol ; 51(5): 492-504, 2008 May.
Article in English | MEDLINE | ID: mdl-18460984

ABSTRACT

Amlodipine, an antihypertensive drug, and diclofenac, an antiinflammatory drug, may generally be combined, particularly in elderly patients; therefore, the potential for their interaction is high. We aim to determine if amlodipine interferes with the antimigratory effect of diclofenac. For this, male spontaneously hypertensive rats (SHRs) were treated with either diclofenac (1 mg.kg.d, 15 d) alone or combined with amlodipine (10 mg.kg.d, 15 d). Leukocyte rolling, adherence, and migration were studied by intravital microscopy. Diclofenac did not change (180.0 +/- 2.3), whereas amlodipine combined (163.4 +/- 5.1) or not (156.3 +/- 4.3) with diclofenac reduced the blood pressure (BP) levels in SHR (183.1 +/- 4.4). Diclofenac and amlodipine reduced leukocyte adherence, migration, and ICAM-1 expression, whereas only diclofenac reduced rolling leukocytes as well. Combined with amlodipine, the effect of the diclofenac was reduced. Neither treatment tested increased the venular shear rate or modified the venular diameters, number of circulating leukocytes, P-selectin, PECAM-1, L-selectin, or CD-18 expressions. No difference could be found in plasma concentrations of both drugs given alone or in association. In conclusion, amlodipine reduces leukocyte migration in SHR, reducing endothelial cell ICAM-1 expression. Amlodipine reduces the effect of the diclofenac, possibly by the same mechanism. A pharmacokinetic interaction as well as an effect on the other adhesion molecules tested could be discarded.


Subject(s)
Amlodipine/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antihypertensive Agents/therapeutic use , Cell Movement/drug effects , Diclofenac/therapeutic use , Hypertension/drug therapy , Amlodipine/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Cell Adhesion/drug effects , Diclofenac/pharmacology , Drug Interactions , Drug Therapy, Combination , Flow Cytometry , Hypertension/pathology , Immunohistochemistry , Leukocyte Count , Leukocyte Rolling/drug effects , Male , Microcirculation/drug effects , Polymerase Chain Reaction , Rats , Rats, Inbred SHR
10.
Rev. bras. hipertens ; 8(1): 76-88, jan.-mar. 2001. ilus, tab
Article in Portuguese | LILACS | ID: lil-284129

ABSTRACT

O endotélio sadio exerce funçöes anticoagulante, vasodilatadora e antiinflamatória que säo essenciais para a manutençäo da homeostasia. Em várias doenças cardiovasculares, entre elas a hipertensäo arterial, ocorre disfunçäo endotelial. O endotélio normal tem funçäo protetora contra o desenvolvimento de lesöes vasculares mantendo a vasodilataçäo, inibindo a agregaçäo plaquetária, a adesäo leucocitária e a proliferaçäo das células musculares lisas. Essas açöes säo exercidas principalmente pelo óxido nítrico, considerado o mais importante fator endotelial, ou EDRF (do inglês Endothelial-Derived Relaxing Factor), ao lado da prostaciclina e do fator hiperpolarizante derivado do endotélio. O endotélio pode também gerar fatores contráteis conhecidos por EDCFs, como as endotelinas, a angiotensina II, as prostaglandinas vasoconstritoras e espécies reativas de oxigênio. A disfunçäo endotelial na hipertensäo leva a desequilíbrio da produçäo/liberaçäo dos fatores contráteis e relaxantes e: 1) provoca diminuiçäo da geraçäo de óxido nítrico/aumento das espécies reativas de oxigênio, aumentando dessa forma o tônus vascular; 2) contribui para o aumento da permeabilidade vascular levando à formaçäo de edema subendotelial; 3) aumenta a expressäo de moléculas de adesäo com conseqüente aumento da aderência leucocitária à parede vascular; 4) acelera a coagulaçäo intravascular; 5) aumenta a proliferaçäo de células musculares lisas, levando à hipertrofia/hiperplasia da parede vascular. Torna-se evidente assim que o endotélio tem papel central na hipertensäo, controlando a permeabilidade vascular, a adesäo leucocitária, a proliferaçäo de células musculares lisas, a coagulaçäo e o equilíbrio entre fatores endoteliais (os EDRFs e os EDCFs).


Subject(s)
Humans , Animals , Endothelium/physiology , Hypertension , Nitric Oxide/physiology , Angiotensin II
11.
RGO (Porto Alegre) ; 40(4): 298-302, jul.-ago. 1992. ilus
Article in Portuguese | LILACS, BBO - Dentistry | ID: biblio-854869

ABSTRACT

Neste trabalho foram avaliados "in vitro" os desgastes causados em placas de plex-glass por vários tipos de escovas dentais (duras, médias e macias) associadas com preparações básicas de dentrifícios de diferentes abrasividades (alta, média e baixa). Foi verificado que as escovas variam muito com relação às características de suas cerdas, não existindo mesma qualificação entre marcas diferentes. Foi observado, também um processo de grande integração entre as cerdas da escova e dentifrícios, situação essa totalmente indivisualizada


Subject(s)
Dental Devices, Home Care , Dentifrices
SELECTION OF CITATIONS
SEARCH DETAIL
...