Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337247

ABSTRACT

The aim of this study was to explore the thermal properties of epoxy-acrylate blends for the liquid crystal display (LCD) 3D printing technique. Starting from an epoxy-acrylate blend with a ratio of epoxy to acrylate of 50:50, the effect of adding a reactive monofunctional epoxy diluent was evaluated. The diluent was a resin composed by oxirane, mono[(C12-14 alkyl) methyl] derivatives selected for its low viscosity (i.e., 1.8 Poise) at room temperature and its reactivity. The diluent content varied from 15 to 25 wt% and, for all the formulation, double curing cycles, where thermal curing followed photocuring, were studied. The effect of different curing temperatures was also evaluated. The control of the diluent content and of the curing temperature allowed tailoring of the thermomechanical resin properties while improving the resin's processability. The glass transition ranged from 115.4 °C to 90.8 °C depending on the combination of diluent content and post-curing temperature. The resin developed displayed a faster processing time tested on a reference part with printing time of 4 h and 20 min that was much lower than the printing times (7 and 16 h) observed for the starting formulations.

2.
Polymers (Basel) ; 15(22)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38006185

ABSTRACT

In this work, a 3D printed biocompatible micro-optofluidic (MoF) device for two-phase flow monitoring is presented. Both an air-water bi-phase flow and a two-phase mixture composed of micrometric cells suspended on a liquid solution were successfully controlled and monitored through its use. To manufacture the MoF device, a highly innovative microprecision 3D printing technique was used named Projection Microstereolithography (PµSL) in combination with the use of a novel 3D printable photocurable resin suitable for biological and biomedical applications. The concentration monitoring of biological fluids relies on the absorption phenomenon. More precisely, the nature of the transmission of the light strictly depends on the cell concentration: the higher the cell concentration, the lower the optical acquired signal. To achieve this, the microfluidic T-junction device was designed with two micrometric slots for the optical fibers' insertion, needed to acquire the light signal. In fact, both the micro-optical and the microfluidic components were integrated within the developed device. To assess the suitability of the selected biocompatible transparent resin for optical detection relying on the selected working principle (absorption phenomenon), a comparison between a two-phase flow process detected inside a previously fully characterized micro-optofluidic device made of a nonbiocompatible high-performance resin (HTL resin) and the same made of the biocompatible one (BIO resin) was carried out. In this way, it was possible to highlight the main differences between the two different resin grades, which were further justified with proper chemical analysis of the used resins and their hydrophilic/hydrophobic nature via static water contact angle measurements. A wide experimental campaign was performed for the biocompatible device manufactured through the PµSL technique in different operative conditions, i.e., different concentrations of eukaryotic yeast cells of Saccharomyces cerevisiae (with a diameter of 5 µm) suspended on a PBS (phosphate-buffered saline) solution. The performed analyses revealed that the selected photocurable transparent biocompatible resin for the manufactured device can be used for cell concentration monitoring by using ad hoc 3D printed micro-optofluidic devices. In fact, by means of an optical detection system and using the optimized operating conditions, i.e., the optimal values of the flow rate FR=0.1 mL/min and laser input power P∈{1,3} mW, we were able to discriminate between biological fluids with different concentrations of suspended cells with a robust working ability R2=0.9874 and Radj2=0.9811.

3.
Polymers (Basel) ; 15(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37447455

ABSTRACT

Currently, the epoxy resin market is expressing concerns about epoxy resins' non-recyclability, which can hinder their widespread use. Moreover, epoxy monomers are synthesized via petroleum-based raw materials, which also limits their use. So, it is crucial to find more environmentally friendly alternative solution for their formulation. Within this context, the aim of this paper is to exploit a Cradle-to-Cradle approach, which consists of remodeling and reshaping the productive cycle of consumer products to make sure that they can be infinitely reused rather than just being recycled with a downgrading of their properties or uses, according to the principle of the complete circular economy. Indeed, after starting with a fully-recyclable bio-based epoxy formulation and assessing its recyclability as having a process yield of 99%, we obtained a recycled polymer that could be reused, mixing with the same bio-based epoxy formulation with percentages varying from 15 wt% to 27 wt%. The formulation obtained was thoroughly characterized by a dynamic-mechanical analysis, differential scanning calorimetry, and flexural tests. This approach had two advantages: (1) it represented a sustainable disposal route for the epoxy resin, with nearly all the epoxy resin recovered, and (2) the obtained recycled polymer could be used as a green component of the primary bio-based epoxy matrix. In the end, by using replicated general factorial designs (as statistical tools) combined with a proper optimization process, after carrying out a complete thermo-mechanical characterization of the developed epoxy formulations, the right percentage of recycled polymer content was selected with the aim of identifying the most performing epoxy matrix formulation in terms of its thermo-mechanical properties.

4.
Polymers (Basel) ; 15(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37376336

ABSTRACT

In this work, a quadratic polynomial regression model was developed to aid practitioners in the determination of the refractive index value of transparent 3D printable photocurable resins usable for micro-optofluidic applications. The model was experimentally determined by correlating empirical optical transmission measurements (the dependent variable) to known refractive index values (the independent variable) of photocurable materials used in optics, thus obtaining a related regression equation. In detail, a novel, simple, and cost-effective experimental setup is proposed in this study for the first time for collecting the transmission measurements of smooth 3D printed samples (roughness ranging between 0.04 and 2 µm). The model was further used to determine the unknown refractive index value of novel photocurable resins applicable in vat photopolymerization (VP) 3D printing techniques for manufacturing micro-optofluidic (MoF) devices. In the end, this study proved how knowledge of this parameter allowed us to compare and interpret collected empirical optical data from microfluidic devices made of more traditional materials, i.e., Poly(dimethylsiloxane) (PDMS), up to novel 3D printable photocurable resins suitable for biological and biomedical applications. Thus, the developed model also provides a quick method to evaluate the suitability of novel 3D printable resins for MoF device fabrication within a well-defined range of refractive index values (1.56; 1.70).

5.
Materials (Basel) ; 15(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36295462

ABSTRACT

In this paper, a hybrid commercially available alumina/polymer filament was 3D printed and thermally treated (debinding and sintering) to obtain ceramic parts. Microscopic and spectroscopic analysis was used to thoroughly characterize the green and sintered parts in terms of their mesostructured, as well as their flexural properties. The sintered samples show an α alumina crystalline phase with a mean density of 3.80 g/cm3, a tensile strength of 232.6 ± 12.3 MPa, and a Vickers hardness of 21 ± 0.7 GPa. The mean thermal conductivity value at room temperature was equal to 21.52 ± 0.02 W/(mK). The values obtained through FFF production are lower than those obtained by conventional processes as the 3D-printed samples exhibited imperfect interlayer bonding and voids similar to those found in the structures of polymeric FFFs. Nonetheless, the highly filled ceramic filament is suitable for use in affordable and easy-to-operate FFF machines, as shown by the cost analysis of a real printed and sintered FFF part.

6.
Polymers (Basel) ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015518

ABSTRACT

Metal 3D-printed parts are critical in industries such as biomedical, surgery, and prosthetics to create tailored components for patients, but the costs associated with traditional metal additive manufacturing (AM) techniques are typically prohibitive. To overcome this disadvantage, more cost-effective manufacturing processes are needed, and a good approach is to combine fused deposition modeling (FDM) with debinding-sintering processes. Furthermore, optimizing the printing parameters is required to improve material density and mechanical performance. The design of experiment (DoE) technique was used to evaluate the impact of three printing factors, namely nozzle temperature, layer thickness, and flow rate, on the tensile and bending properties of sintered 316L stainless steel in this study. Green and sintered samples were morphologically and physically characterized after printing, and the optimal printing settings were determined by statistical analysis, which included the surface response technique. The mechanical properties of the specimens increased as the flow rate and layer thickness increased and the nozzle temperature decreased. The optimized printing parameters for the ranges used in this study include 110% flow rate, 140 µm layer thickness, and 240 °C nozzle temperature, which resulted in sintered parts with a tensile strength of 513 MPa and an elongation at break of about 60%.

7.
Entropy (Basel) ; 24(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35626538

ABSTRACT

This research focuses on the thermal characterization of 3D-printed parts obtained via fused filament fabrication (FFF) technology, which uses a poly(lactic acid) (PLA)-based filament filled with milled carbon fibers (MCF) from pyrolysis at different percentages by weight (10, 20, 30 wt%). Differential scanning calorimetry (DSC) and thermal conductivity measurements were used to evaluate the thermal characteristics, morphological features, and heat transport behavior of the printed specimens. The experimental results showed that the addition of MCF to the PLA matrix improved the conductive properties. Scanning electron microscopy (SEM) micrographs were used to obtain further information about the porosity of the systems.

8.
Polymers (Basel) ; 14(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35631994

ABSTRACT

Tailored ZnO surface functionalization was performed inside a polydimethyl-siloxane (PDMS) microchannel of a micro-optofluidic device (mofd) to modulate its surface hydrophobicity to develop a method for fine tuning the fluid dynamics inside a microchannel. The wetting behavior of the surface is of particular importance if two different phases are used for system operations. Therefore, the fluid dynamic behavior of two immiscible fluids, (i) air-water and (ii) air-glycerol/water in PDMS mofds and ZnO-PDMS mofds was investigated by using different experimental conditions. The results showed that air-glycerol/water fluid was always faster than air-water flow, despite the microchannel treatment: however, in the presence of ZnO microstructures, the velocity of the air-glycerol/water fluid decreased compared with that observed for the air-water fluid. This behavior was associated with the strong ability of glycerol to create an H-bond network with the exposed surface of the zinc oxide microparticles. The results presented in this paper allow an understanding of the role of ZnO functionalization, which allows control of the microfluidic two-phase flow using different liquids that undergo different chemical interactions with the surface chemical terminations of the microchannel. This chemical approach is proposed as a control strategy that is easily adaptable for any embedded micro-device.

9.
Polymers (Basel) ; 13(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34372121

ABSTRACT

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.

10.
Polymers (Basel) ; 12(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33227908

ABSTRACT

A comprehensive kinetics degradation study is carried out on novel multiple cages polyhedral oligomeric silsesquioxane (POSS)/polystyrene (PS) composites at 5% (w/w) of POSS to assess their thermal behavior with respect to the control PS and other similar POSS/PS systems studied in the past. The composites are synthesized by in situ polymerization of styrene in the presence of POSSs and characterized by 1H-NMR. The characteristics of thermal parameters are determined using kinetics literature methods, such as those developed by Kissinger and Flynn, Wall, and Ozawa (FWO), and discussed and compared with each other and with those obtained in the past for similar POSS/PS composites. A good improvement in the thermal stability with respect to neat polymer is found, but not with respect to those obtained in the past for polystyrene reinforced with single- or double-POSS cages. This behavior is attributed to the greater steric hindrance of the three-cages POSS compared with those of single- or double-cage POSS molecules.

11.
Polymers (Basel) ; 12(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992937

ABSTRACT

Cellulose/PLA-based blends (up to 77 vol./vol.% of the added fibers) for applications in extrusion-based technology were realized in an internal mixer by setting different operating conditions. In particular, both the mixing time and temperature were increased in order to simulate a recycling operation (10 or 25 min, 170 or 190 °C) and gain information on the potential reuse of the developed systems. The torque measurements during the compound's preparation, and the compound's mechanical tensile features, both in the static and dynamic mode, were evaluated for each investigated composition. The final results confirmed a reduction of the torque trend over time for the PLA matrix, which was attributed to a possible degradation mechanism, and confirmed by infrared spectroscopy. The mechanical behaviour of the pristine polymer changed from elastoplastic to brittle, with a significant loss in ductility going from the lower mixing temperatures up to the higher ones for the longest time. Through the addition of cellulose fibers into the composite systems, a higher stabilization of the torque in the time and an improvement in the mechanical performance were always verified compared to the neat PLA, with a maximum increase in the Young modulus (+100%) and the tensile strength (+57%), and a partial recovery of the ductility.

12.
Polymers (Basel) ; 12(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708360

ABSTRACT

Epoxy-based blends printable in a Liquid Crystal Display (LCD) printer were studied. Diglycidyl ether of bisphenol A (DGEBA) mixed with Diethyltoluene diamine (DETDA) was used due to the easy processing in liquid form at room temperature and slower reactivity until heated over 150 ° C. The DGEBA/DETDA resin was mixed with a commercial daylight photocurable resin used for LCD screen 3D printing. Calorimetric, dynamic mechanical and rheology testing were carried out on the resulting blends. The daylight resins showed to be thermally curable. Resin's processability in the LCD printer was evaluated for all the blends by rheology and by 3D printing trials. The best printing conditions were determined by a speed cure test. The use of a thermal post-curing cycle after the standard photocuring in the LCD printer enhanced the glass transition temperature T g of the daylight resin from 45 to 137 ° C when post-curing temperatures up to 180 ° C were used. The T g reached a value of 174 ° C mixing 50 wt% of DGEBA/DETDA resin with the photocurable resin when high temperature cure cycle was used.

13.
Molecules ; 25(13)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32605259

ABSTRACT

Novel polystyrene (PS)/polyhedral oligomeric silsequioxanes (POSSs) nanocomposites were designed and prepared by in situ polymerization, using, for the first time, three-cage POSS molecules. The synthesized compounds were first characterized by Fourier transform infrared spectroscopy (FTIR) and 1H NMR spectroscopy to verify the obtaining of the designed products before their thermal performance was evaluated and compared with those of pristine PS and the corresponding single-cage POSSs nanocomposites. The thermal behaviour was checked by the means of the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) was also used to confirm the hypothesis about the dispersion/aggregation of the POSS molecules into the polymer matrix. The parameters chosen to evaluate the thermal stability of the investigated compounds, namely temperature at 5% of mass loss (T5%) and solid residue at 700 °C, showed a significant increase in the stability of the polymers reinforced with the three-cages POSS, in comparison to both PS and single-cage POSS reinforced PSs, which therefore turn out to be promising molecular fillers for nanocomposite production.


Subject(s)
Organosilicon Compounds/chemical synthesis , Polystyrenes/chemistry , Calorimetry, Differential Scanning , Materials Testing , Microscopy, Atomic Force , Molecular Structure , Organosilicon Compounds/chemistry , Proton Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
14.
Materials (Basel) ; 11(7)2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29997365

ABSTRACT

Three commercial filaments for Fused Deposition Modeling (FDM) were selected to study the influence of polymer formulation on the printing quality and mechanical properties of FDM specimens. The three filaments were all based on polylactic acid (PLA) as the matrix, and they are sold as PLA filaments. The printing quality was tested by printing one complex shape with overhang features. The marked shear thinning behavior for two filaments was observed by rheology. The filaments were also studied by scanning electron microscopy and thermogravimetric analysis (TGA) to unveil their composition. The filaments with the best printing quality showed the presence of mineral fillers, which explained the melt behavior observed by rheology. The tensile testing confirmed that the filled PLA was the best-performing filament both in terms of printing quality and thermomechanical performance, with a p-value = 0.106 for the tensile modulus, and a p-value = 0.615 for the ultimate tensile strength.

15.
Materials (Basel) ; 10(9)2017 Aug 26.
Article in English | MEDLINE | ID: mdl-28846607

ABSTRACT

Green composites from polypropylene and lignin-based natural material were manufactured using a melt extrusion process. The lignin-based material used was the so called "liquid wood". The PP/"Liquid Wood" blends were extruded with "liquid wood" content varying from 20 wt % to 80 wt %. The blends were thoroughly characterized by flexural, impact, and dynamic mechanical testing. The addition of the Liquid Wood resulted in a great improvement in terms of both the flexural modulus and strength but, on the other hand, a reduction of the impact strength was observed. For one blend composition, the composites reinforced with hemp fibers were also studied. The addition of hemp allowed us to further improve the mechanical properties. The composite with 20 wt % of hemp, subjected to up to three recycling cycles, showed good mechanical property retention and thermal stability after recycling.

SELECTION OF CITATIONS
SEARCH DETAIL
...