Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5295, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906876

ABSTRACT

The Living Planet Index (LPI) measures the average change in population size of vertebrate species over recent decades and has been repeatedly used to assess the changing state of nature. The LPI indicates that vertebrate populations have decreased by almost 70% over the last 50 years. This is in striking contrast with current studies based on the same population time series data that show that increasing and decreasing populations are balanced on average. Here, we examine the methodological pipeline of calculating the LPI to search for the source of this discrepancy. We find that the calculation of the LPI is biased by several mathematical issues which impose an imbalance between detected increasing and decreasing trends and overestimate population declines. Rather than indicating that vertebrate populations do not substantially change, our findings imply that we need better measures for providing a balanced picture of current biodiversity changes. We also show some modifications to improve the reliability of the LPI.


Subject(s)
Biodiversity , Population Dynamics , Vertebrates , Animals , Population Density , Bias , Earth, Planet , Ecosystem
2.
Nat Commun ; 14(1): 5559, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37689787

ABSTRACT

Range size is a universal characteristic of every biological species, and is often assumed to affect diversification rate. There are strong theoretical arguments that large-ranged species should have higher rates of diversification. On the other hand, the observation that small-ranged species are often phylogenetically clustered might indicate high diversification of small-ranged species. This discrepancy between theory and the data may be caused by the fact that typical methods of data analysis do not account for range size changes during speciation. Here we use a cladogenetic state-dependent diversification model applied to mammals to show that range size changes during speciation are ubiquitous and small-ranged species indeed diversify generally slower, as theoretically expected. However, both range size and diversification are strongly influenced by idiosyncratic and spatially localized events, such as colonization of an archipelago or a mountain system, which often override the general pattern of range size evolution.


Subject(s)
Data Analysis , Dissent and Disputes , Animals , Genetic Speciation , Upper Extremity , Mammals/genetics
3.
Insects ; 13(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36135479

ABSTRACT

Environmental productivity, i.e., the amount of biomass produced by primary producers, belongs among the key factors for the biodiversity patterns. Although the relationship of diversity to environmental productivity differs among studied taxa, detailed data are largely missing for most groups, including insects. Here, we present a study of moth diversity patterns at local and regional scales along a continent-wide gradient of environmental productivity in southern African savannah ecosystems. We sampled diversity of moths (Lepidoptera: Heterocera) at 120 local plots along a gradient of normalized difference vegetation index (NDVI) from the Namib Desert to woodland savannahs along the Zambezi River. By standardized light trapping, we collected 12,372 specimens belonging to 487 moth species. The relationship between species richness for most analyzed moth groups and environmental productivity was significantly positively linear at the local and regional scales. The absence of a significant relationship of most moth groups' abundance to environmental productivity did not support the role of the number of individuals in the diversity-productivity relationship for south African moths. We hypothesize the effects of water availability, habitat complexity, and plant diversity drive the observed moth diversity patterns.

4.
Proc Biol Sci ; 289(1973): 20220370, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35440206

ABSTRACT

Aerial displaying is a flamboyant part of the sexual behaviour of several volant animal groups, including birds. Nevertheless, little attention has been focused on identifying correlates of large-scale diversity in this trait. In this study, we scored the presence and absence of aerial displays in males of 1732 species of passerine birds (Passeriformes) and employed Bayesian phylogenetically informed mixed models to test for associations between aerial displays and a set of life-history and environmental predictors. Our multi-variate models revealed that species with males that perform aerial displays inhabited open rather than closed (forested) habitats. These species also exhibited higher levels of polygyny, had more elongated wings, migrated over longer distances and bred at higher latitudes. When we included species where the sexual function of displays has not been explicitly described but is likely to occur, we found that aerial displaying was also associated with smaller body size and increased male plumage coloration. Our results suggest that both sexual selection and natural selection have been important sources of selection on aerial displays in passerines.


Subject(s)
Passeriformes , Animals , Bayes Theorem , Ecosystem , Male , Phenotype , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...