Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
iScience ; 26(9): 107613, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37664637

ABSTRACT

Patients with the sleep disorder narcolepsy suffer from excessive daytime sleepiness, disrupted nighttime sleep, and cataplexy-the abrupt loss of postural muscle tone during wakefulness, often triggered by strong emotion. The dopamine (DA) system is implicated in both sleep-wake states and cataplexy, but little is known about the function of DA release in the striatum and sleep disorders. Recording DA release in the ventral striatum revealed orexin-independent changes across sleep-wake states as well as striking increases in DA release in the ventral, but not dorsal, striatum prior to cataplexy onset. Tonic low-frequency stimulation of ventral tegmental efferents in the ventral striatum suppressed both cataplexy and rapid eye movement (REM) sleep, while phasic high-frequency stimulation increased cataplexy propensity and decreased the latency to REM sleep. Together, our findings demonstrate a functional role of DA release in the striatum in regulating cataplexy and REM sleep.

2.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37397994

ABSTRACT

Disruptions to sleep can be debilitating and have a severe effect on daily life. Patients with the sleep disorder narcolepsy suffer from excessive daytime sleepiness, disrupted nighttime sleep, and cataplexy - the abrupt loss of postural muscle tone (atonia) during wakefulness, often triggered by strong emotion. The dopamine (DA) system is implicated in both sleep-wake states and cataplexy, but little is known about the function of DA release in the striatum - a major output region of midbrain DA neurons - and sleep disorders. To better characterize the function and pattern of DA release in sleepiness and cataplexy, we combined optogenetics, fiber photometry, and sleep recordings in a murine model of narcolepsy (orexin-/-; OX KO) and in wildtype mice. Recording DA release in the ventral striatum revealed OX-independent changes across sleep-wake states as well as striking increases in DA release in the ventral, but not dorsal, striatum prior to cataplexy onset. Tonic low frequency stimulation of ventral tegmental efferents in the ventral striatum suppressed both cataplexy and REM sleep, while phasic high frequency stimulation increased cataplexy propensity and decreased the latency to rapid eye movement (REM) sleep. Together, our findings demonstrate a functional role of DA release in the striatum in regulating cataplexy and REM sleep.

3.
Physiol Behav ; 262: 114105, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36736416

ABSTRACT

Hippocampal dysfunction is associated with major depressive disorder, a serious mental illness characterized by not only depressed mood but also appetite disturbance and dysregulated body weight. However, the underlying mechanisms by which hippocampal circuits regulate metabolic homeostasis remain incompletely understood. Here we show that collateralizing melanocortin 4 receptor (MC4R) circuits in the ventral subiculum (vSUB), one of the major output structures of the hippocampal formation, affect food motivation and energy balance. Viral-mediated cell type- and projection-specific input-output circuit mapping revealed that the nucleus accumbens shell (NAcSh)-projecting vSUBMC4R+ neurons send extensive collateral projections of to various hypothalamic nuclei known to be important for energy balance, including the arcuate, ventromedial and dorsomedial nuclei, and receive monosynaptic inputs mainly from the ventral CA1 and the anterior paraventricular nucleus of thalamus. Chemogenetic activation of NAcSh-projecting vSUBMC4R+neurons lead to increase in motivation to obtain palatable food without noticeable effect on homeostatic feeding. Viral-mediated restoration of MC4R signaling in the vSUB partially restores obesity in MC4R-null mice without affecting anxiety- and depression-like behaviors. Collectively, these results delineate vSUBMC4R+ circuits to the unprecedented level of precision and identify the vSUBMC4R signaling as a novel regulator of food reward and energy balance.


Subject(s)
Depressive Disorder, Major , Motivation , Mice , Animals , Receptor, Melanocortin, Type 4/metabolism , Depressive Disorder, Major/metabolism , Hippocampus/metabolism , Nucleus Accumbens/metabolism , Mice, Knockout
4.
Endocrinology ; 163(12)2022 10 23.
Article in English | MEDLINE | ID: mdl-36181426

ABSTRACT

Estrogen receptor alpha (ERα)-mediated estrogen signaling plays a pivotal role in both reproductive and nonreproductive functions. Transcriptional regulation of the ERα gene is highly complex, with multiple transcript variants being differentially produced across the tissues. However, tissue-specific variation and physiological specificity of the ERα variants are not yet fully understood. In an attempt to generate a Cre-dependently restorable ERα-null mouse for functional genetic studies, we unexpectedly produced ERα hypomorphic mice with biased downregulation of a previously unappreciated long ERα isoform that is enriched in the female reproductive organs (uterus and ovaries) and the pituitary but minimally expressed in the brain. Female homozygous mutant mice were capable of pregnancy but displayed irregular estrus cycle and rarely kept newborn pups alive. No significant morphological and pathological changes in reproductive system or disruption of body weight homeostasis were seen in female homozygous mutant mice. Collectively, our results define a tissue-specific enriched long ERα isoform and its preferential role in female reproductive function rather than body weight homeostasis.


Subject(s)
Estrogen Receptor alpha , Estrogens , Reproductive Physiological Phenomena , Animals , Female , Mice , Body Weight , Estrogen Receptor alpha/genetics , Mice, Knockout , Protein Isoforms , Reproductive Physiological Phenomena/genetics
5.
Mol Metab ; 66: 101622, 2022 12.
Article in English | MEDLINE | ID: mdl-36307046

ABSTRACT

OBJECTIVE: RGS2 is a GTPase activating protein that modulates GPCR-Gα signaling and mice lacking RGS2 globally exhibit metabolic alterations. While RGS2 is known to be broadly expressed throughout the body including the brain, the relative contribution of brain RGS2 to metabolic homeostasis remains unknown. The purpose of this study was to characterize RGS2 expression in the paraventricular nucleus of hypothalamus (PVN) and test its role in metabolic homeostasis. METHODS: We used a combination of RNAscope in situ hybridization (ISH), immunohistochemistry, and bioinformatic analyses to characterize the pattern of Rgs2 expression in the PVN. We then created mice lacking Rgs2 either prenatally or postnatally in the PVN and evaluated their metabolic consequences. RESULTS: RNAscope ISH analysis revealed a broad but regionally enriched Rgs2 mRNA expression throughout the mouse brain, with the highest expression being observed in the PVN along with several other brain regions, such as the arcuate nucleus of hypothalamus and the dorsal raphe nucleus. Within the PVN, we found that Rgs2 is specifically enriched in CRH+ endocrine neurons and is further increased by calorie restriction. Functionally, although Sim1-Cre-mediated prenatal deletion of Rgs2 in PVN neurons had no major effects on metabolic homeostasis, AAV-mediated adult deletion of Rgs2 in the PVN led to significantly increased food intake, body weight (both fat and fat-free masses), body length, and blood glucose levels in both male and female mice. Strikingly, we found that prolonged postnatal loss of Rgs2 leads to neuronal cell death in the PVN, while rapid body weight gain in the early phase of viral-mediated PVN Rgs2 deletion is independent of PVN neuronal loss. CONCLUSIONS: Our results provide the first evidence to show that PVN Rgs2 expression is not only sensitive to metabolic challenge but also critically required for PVN endocrine neurons to function and maintain metabolic homeostasis.


Subject(s)
Energy Metabolism , Paraventricular Hypothalamic Nucleus , Mice , Animals , Male , Female , Paraventricular Hypothalamic Nucleus/metabolism , Energy Metabolism/physiology , Obesity/metabolism , Homeostasis , Body Weight
6.
Mol Metab ; 55: 101401, 2022 01.
Article in English | MEDLINE | ID: mdl-34823066

ABSTRACT

OBJECTIVE: The paraventricular nucleus of hypothalamus (PVN), an integrative center in the brain, orchestrates a wide range of physiological and behavioral responses. While the PVN melanocortin 4 receptor (MC4R) signaling (PVNMC4R+) is involved in feeding regulation, the neuroanatomical organization of PVNMC4R+ connectivity and its role in other physiological regulations are incompletely understood. Here we aimed to better characterize the input-output organization of PVNMC4R+ neurons and test their physiological functions beyond feeding. METHODS: Using a combination of viral tools, we mapped PVNMC4R+ circuits and tested the effects of chemogenetic activation of PVNMC4R+ neurons on thermoregulation, cardiovascular control, and other behavioral responses beyond feeding. RESULTS: We found that PVNMC4R+ neurons innervate many different brain regions that are known to be important not only for feeding but also for neuroendocrine and autonomic control of thermoregulation and cardiovascular function, including but not limited to the preoptic area, median eminence, parabrachial nucleus, pre-locus coeruleus, nucleus of solitary tract, ventrolateral medulla, and thoracic spinal cord. Contrary to these broad efferent projections, PVNMC4R+ neurons receive monosynaptic inputs mainly from other hypothalamic nuclei (preoptic area, arcuate and dorsomedial hypothalamic nuclei, supraoptic nucleus, and premammillary nucleus), the circumventricular organs (subfornical organ and vascular organ of lamina terminalis), the bed nucleus of stria terminalis, and the parabrachial nucleus. Consistent with their broad efferent projections, chemogenetic activation of PVNMC4R+ neurons not only suppressed feeding but also led to an apparent increase in heart rate, blood pressure, and brown adipose tissue temperature. These physiological changes accompanied acute transient hyperactivity followed by hypoactivity and resting-like behavior. CONCLUSIONS: Our results elucidate the neuroanatomical organization of PVNMC4R+ circuits and shed new light on the roles of PVNMC4R+ pathways in autonomic control of thermoregulation, cardiovascular function, and biphasic behavioral activation.


Subject(s)
Paraventricular Hypothalamic Nucleus/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , Body Temperature Regulation/physiology , Brain/metabolism , Dorsomedial Hypothalamic Nucleus/metabolism , Gene Knock-In Techniques/methods , Hypothalamus/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Neurons/metabolism , Receptor, Melanocortin, Type 4/physiology , Spinal Cord/metabolism
7.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34344824

ABSTRACT

Sleep loss disrupts consolidation of hippocampus-dependent memory. To characterize effects of learning and sleep loss, we quantified activity-dependent phosphorylation of ribosomal protein S6 (pS6) across the dorsal hippocampus of mice. We find that pS6 is enhanced in dentate gyrus (DG) following single-trial contextual fear conditioning (CFC) but is reduced throughout the hippocampus after brief sleep deprivation (SD; which disrupts contextual fear memory [CFM] consolidation). To characterize neuronal populations affected by SD, we used translating ribosome affinity purification sequencing to identify cell type-specific transcripts on pS6 ribosomes (pS6-TRAP). Cell type-specific enrichment analysis revealed that SD selectively activated hippocampal somatostatin-expressing (Sst+) interneurons and cholinergic and orexinergic hippocampal inputs. To understand the functional consequences of SD-elevated Sst+ interneuron activity, we used pharmacogenetics to activate or inhibit hippocampal Sst+ interneurons or cholinergic input from the medial septum. The activation of either cell population was sufficient to disrupt sleep-dependent CFM consolidation by gating activity in granule cells. The inhibition of either cell population during sleep promoted CFM consolidation and increased S6 phosphorylation among DG granule cells, suggesting their disinhibition by these manipulations. The inhibition of either population across post-CFC SD was insufficient to fully rescue CFM deficits, suggesting that additional features of sleeping brain activity are required for consolidation. Together, our data suggest that state-dependent gating of DG activity may be mediated by cholinergic input and local Sst+ interneurons. This mechanism could act as a sleep loss-driven inhibitory gate on hippocampal information processing.


Subject(s)
Acetylcholine/metabolism , Hippocampus/physiology , Interneurons/physiology , Memory Consolidation , Sleep Deprivation/physiopathology , Animals , Cholinergic Neurons/physiology , Hippocampus/cytology , Learning/physiology , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation , Ribosomal Protein S6/metabolism , Sleep Deprivation/metabolism , Somatostatin
8.
J Psychiatr Res ; 133: 205-211, 2021 01.
Article in English | MEDLINE | ID: mdl-33360427

ABSTRACT

Most of the animal studies using inflammation-induced cognitive change have relied on behavioral testing without objective and biologically solid methods to quantify the severity of cognitive disturbances. We have developed a bispectral EEG (BSEEG) method using a novel algorithm in clinical study. This method effectively differentiates between patients with and without delirium, and predict long-term mortality. In the present study, we aimed to apply our bispectral EEG (BSEEG) method, which can detect patients with delirium, to a mouse model of delirium with systemic inflammation induced by lipopolysaccharides (LPS) injection. We recorded EEG after LPS injection using wildtype early adulthood mice (2~3-month-old) and aged mice (18-19-month-old). Animal EEG recordings were converted for power spectral density to calculate BSEEG score using the similar BSEEG algorithm previously developed for our human study. The BSEEG score was relatively stable and slightly high during the day. Alternatively, the BSEEG score was erratic and low in average during the night. LPS injection increased the BSEEG score dose-dependently and diminished the diurnal changes. The mean BSEEG score increased much more in the aged mice group as dosage increased. Our results suggest that BSEEG method can objectively "quantify" level of neuro-Inflammation induced by systemic inflammation (LPS), and that this BSEEG method can be useful as a model of delirium in mice.


Subject(s)
Delirium , Animals , Disease Models, Animal , Electroencephalography , Humans , Inflammation/chemically induced , Lipopolysaccharides , Mice
9.
Front Neurosci ; 14: 139, 2020.
Article in English | MEDLINE | ID: mdl-32153359

ABSTRACT

Eating disorders (EDs) are serious mental illnesses thought to arise from the complex gene-environment interactions. DNA methylation patterns in histone deacetylase 4 (HDAC4) locus have been associated with EDs and we have previously identified a missense mutation in the HDAC4 gene (HDAC4 A786T ) that increases the risk of developing an ED. In order to evaluate the biological consequences of this variant and establish a useful mouse model of EDs, here we performed behavioral characterization of mice homozygous for Hdac4 A778T (corresponding to human HDAC4 A786T ) that were further backcrossed onto C57BL/6 background. When fed high-fat diet, male, but not female, homozygous mice showed a trend toward decreased weight gain compared to their wild-type littermates. Behaviorally, male, but not female, homozygous mice spent less time in eating and exhibited reduced motivation to work for palatable food and light phase-specific decrease in locomotor activity. Additionally, homozygous Hdac4 A778T female, but not male, mice display social subordination when subjected to a tube dominance test. Collectively, these results reveal a complex sex- and circadian-dependent role of ED-associated Hdac4 A778T mutation in affecting mouse behaviors. Homozygous Hdac4 A778T mice could therefore be a useful animal model to gain insight into the neurobiological basis of EDs.

10.
Diabetes ; 68(6): 1210-1220, 2019 06.
Article in English | MEDLINE | ID: mdl-30894367

ABSTRACT

Leptin resistance is a hallmark of obesity with unclear etiology. Celastrol, a compound found in the roots of the Tripterygium wilfordii and known to reduce endoplasmic reticulum (ER) stress, has recently emerged as a promising candidate to treat obesity by improving leptin sensitivity. However, the underlying neural mechanisms by which celastrol reduces obesity remain unclear. Using three different mouse models of obesity-diet-induced obesity (DIO), leptin receptor (LepR)-null, and melanocortin 4 receptor (MC4R)-null mice-in this study, we show that systemic celastrol administration substantially reduces food intake and body weight in MC4R-null comparable to DIO, proving the MC4R-independent antiobesity effect of celastrol. Body weight reduction was due to decreases in both fat and lean mass, and modest but significant body weight reduction was also observed in nonobese wild-type and LepR-null mice. Unexpectedly, celastrol upregulated proinflammatory cytokines without affecting genes involved in ER stress. Importantly, celastrol steadily increased sympathetic nerve activity to the brown fat and kidney with concordant increases of resting metabolic rate and arterial pressure. Our results suggest a previously unappreciated mechanism of action of celastrol in the regulation of energy homeostasis and highlight the need for careful consideration of its development as a safe antiobesity medication.


Subject(s)
Eating/drug effects , Obesity/genetics , Triterpenes/pharmacology , Weight Loss/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/innervation , Animals , Arterial Pressure/drug effects , Basal Metabolism/drug effects , Body Weight/drug effects , Cytokines/drug effects , Cytokines/genetics , Diet, High-Fat , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Energy Metabolism , Inflammation , Kidney/drug effects , Kidney/innervation , Mice , Mice, Knockout , Obesity/metabolism , Pentacyclic Triterpenes , Receptor, Melanocortin, Type 4/genetics , Receptors, Leptin/genetics , Sympathetic Nervous System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...